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Abstract
Forest carbon offset protocols reward measurable carbon stocks to adhere to accepted 
greenhouse gas (GHG) accounting principles. This focus on measurable stocks threatens 
permanence and shifts project-level risks from natural disturbances to an offset registry’s 
buffer pool. This creates bias towards current GHG benefits, where greater but poten-
tially high-risk stocks are incentivized vs. medium-term to long-term benefits of reduced 
but more stable stocks. We propose a probability-based accounting framework that allows 
for more complete risk accounting for forest carbon while still adhering to International 
Organization for Standardization (ISO) GHG accounting principles. We identify structural 
obstacles to endorsement of probability-based accounting in current carbon offset proto-
cols and demonstrate through a case study how to overcome these obstacles without vio-
lating ISO GHG principles. The case study is the use of forest restoration treatments in 
fire-adapted forests that stabilize forest carbon and potentially avoid future wildfire emis-
sions. Under current carbon offset protocols, these treatments are excluded since carbon 
stocks are lowered initially. This limitation is not per se required by ISO’s GHG accounting 
principles. We outline how real, permanent, and verifiable GHG benefits can be accounted 
for through a probability-based framework that lowers stressors on a registry’s buffer pool.
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1 Introduction

1.1  Carbon accounting for forest‑based offset markets

Carbon offset markets have a proven track record to incentivize atmospheric green-
house gas (GHG) reductions by increasing forest carbon stocks through reforestation 
or improved forest management (IFM) activities compared to a baseline projection 
(Anderson et al. 2017). Additionally, methodologies that account for the avoided future 
loss of forest carbon stocks by preventing conversion of forest to non-forest are also 
available and have been employed in numerous offset transactions to date (ACR 2020). 
Contrary to other ecosystem markets (e.g., green bonds, corporate social responsibility 
commitments), carbon offset markets are the best-established ecosystem service mar-
kets in terms of rigor and price paid, for instance, per megagram (Mg) of carbon diox-
ide equivalents  (CO2e) delivered.

Current forest carbon offset protocols for IFM (e.g., ACR 2018a) rely on a carbon 
stock measurement GHG accounting framework to show verifiable and permanent 
atmospheric emission reductions. Carbon offset credits are generated through demon-
strating above-baseline initial project carbon stocks (Figure 1; variable x) and periodic 
increments of carbon stocks (Figure 1; variable a1-8) throughout the assessment period 
or project lifetime (40 years in case of ACR’s IFM protocol). Depending on the regis-
try, the baseline can be established based on regional average stocking, legal minimum 

Fig 1  Forest carbon stock measurement accounting approach for IFM carbon offset protocols (generic 
example). An initial credit volume (x) is issued for above-baseline carbon stocking (with credit issuance 
drawn out over around 7 years under ACR’s IFM protocol; 2018a). Periodic stock increases over the mini-
mum project period (40 years under ACR’s IFM protocol) can trigger additional credit issuance (a1-8)
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stocking requirements, management approaches optimizing net-present-value, or con-
version to non-forest. External risks or stochastic events such as wildfire, droughts, 
insect infestations, or storms affecting carbon stock permanence over the project life-
time are generically considered (and not quantified) and insured by a contribution to 
a registry-wide buffer pool. For instance, if a wildfire occurs, this is categorized as an 
unintentional reversal, and carbon credit forfeiture is recovered from the registry’s col-
lective buffer pool (externalized risk) and ultimately results in a project termination 
with no further liabilities to a project proponent (Hurteau et al. 2012). From a carbon 
offset project proponent’s perspective, this carbon stock measurement GHG accounting 
framework incentivizes and rewards high initial carbon stocks while disregarding poten-
tial increased risks associated with these high carbon stock volumes in fire-adapted 
forests.

We propose a probability-based GHG accounting framework that would integrate 
carbon dynamics including risk (e.g., wildfire) would benefit registries as a whole, 
since risks to depleting the buffer pool would be minimized. It would also provide an 
incentive to project proponents to implement fire-adapted management. The goal of 
this paper is to demonstrate that a probability-based GHG accounting framework is an 
improvement over a carbon stock measurement GHG accounting framework; is feasi-
ble from an accounting, registry, and project proponent perspective; and could improve 
IFM protocols. Since all existing carbon offset protocols rely on ISO GHG account-
ing principles (2019), we introduce these principles first. Using the American Carbon 
Registry’s (ACR) standard (ACR 2018b) and IFM protocol (ACR 2018a), we then pro-
vide context as to how ISO GHG principles are met by a proposed probability-based 
“avoided wildfire emissions” (AWE) GHG accounting framework, as an example of a 
disturbance-specific forest management protocol. Numerical examples are further pro-
vided in Section 2.2.4 (see Figure 3 for a conceptual example and SI 1, SI 2, and Fig-
ure 4 for a project example).

1.2  Stabilizing carbon through forest restoration treatments

To understand the probability-based GHG accounting framework we discuss below, it is 
necessary to establish forest management and disturbance regimes common in western 
North America and elsewhere. In California, for example, forest carbon stocks declined 
by 0.8% per year from 2001 to 2010, where wildfire accounted for two-thirds of the loss 
of live tree forest carbon (Gonzalez et al. 2015). Forest restoration treatments including 
mechanical thinnings and prescribed fire can restore forests to desired ecological condi-
tions and fire regimes (Goodwin et al. 2020; Jeronimo et al. 2019; Schoennagel et al. 
2017; North 2012; Noss et al. 2006). The goal is to increase stored carbon in trees that 
are larger and more resistant to wildfire, drought, or insects (Foster et al. 2020; Hurteau 
and North 2010; Stephens et al. 2009; see

Box  1). These treatments stabilize forest carbon by retaining a larger share of for-
est carbon stocks in the live carbon pool and maintaining continuous sequestration 
potential.

Box 1 Wildfire-related forest restoration treatments and carbon
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Fire is a key ecological process in forests in the western USA and beyond (Safford and Van de Water 
2014). Over the last two decades, fire-adapted forests have been increasingly affected by large and 
severe wildfires, often beyond the range of historic variability (Reilly et al. 2017). This change in 
fire behavior is due to fire suppression, harvesting history (Stephens et al. 2018), and climate change 
(Stevens-Rumann et al. 2018). Consequences abound, such as declining forest carbon stocks further 
contributing to climate change (Liang et al. 2017), threats to built infrastructure and human life (Moritz 
et al. 2014), diminished wildlife habitat (Chiono et al. 2017; Ganey et al. 2017; North et al. 2017; Ste-
phens et al. 2016), changing hydrological regimes (McKenzie and Littell 2017), and reduced soil health 
(Cobb et al. 2016). In the context of wildfire, the goal of forest restoration treatments is not to suppress 
wildfire but to change wildfire behavior. Forest restoration treatments that shift forest stands from small-
diameter, high-density, and shade-tolerant species towards larger diameter, low density, and fire-tolerant 
species modify fire behavior such that severity and size are reduced compared to the baseline of no res-
toration treatment activity (Liang et al. 2018; Stephens et al. 2012; Moghaddas et al. 2010; Safford et al. 
2009). Type, size, and distribution of restoration treatments greatly affect their effectiveness in changing 
fire behavior (Coen et al. 2018; Thompson et al. 2017). While ignition risk remains unchanged by forest 
restoration treatments (Mann et al. 2016), the altered fire behavior can result in significantly reduced or 
absent fire suppression needs.

With increasing emphasis on forest restoration treatments as a tool in climate change adaptation, their 
large-scale implementation required to effect change (Vaillant and Reinhardt 2017) is hampered by 
a lack of funds (Thompson et al. 2017) and a lack of streamlined methods to efficiently and reliably 
quantify their ecosystem service benefits. These benefits can include climate change mitigation such 
as reduced wildfire emissions (Krofcheck et al. 2019) and stabilized carbon stocks on the landscape 
(Campbell et al. 2012; Mitchell et al. 2009). A full accounting of these outcomes must include longer 
term dynamics, however, or key carbon-related benefits go unrecognized. A similar case can be made 
for silvicultural treatments designed to address other forest health threats where fire is not necessarily an 
expected component of the disturbance regime. One such example is salvage harvesting with the intent 
to reduce severity of insect outbreaks (e.g., Dobor et al. 2020), though salvage harvesting also can have 
the opposite effect by increasing the likelihood and magnitude of subsequent disturbances (Leverkus 
et al. 2021).

However, forest restoration treatments lower initial carbon stocks (Figure 2; solid green 
line) and hence potential (initial) carbon liability. With wildfire, the absence of forest res-
toration treatments can result in a large shift of live carbon to the dead carbon pool if fire 
occurs—resulting in a continuous decline of forest carbon stocks due to decomposition 
(assumed in Figure 2, red solid line) or salvage logging. Furthermore, high-intensity wild-
fires can also cause high levels of tree mortality and soil impacts that result in delayed 
reforestation, i.e. a vegetation type change from forest to grassland or shrub types lasting 
at least several decades (Collins and Roller 2013; Coppoletta et al. 2016; Roccaforte et al. 
2012; Rother and Veblen 2016, p. 20; Tubbesing et al. 2019; van Wagtendonk et al. 2012; 
Welch et al. 2016).

While stand carbon loss due to the forest restoration treatment (green solid line; year 0 
to 5) can be comparable to wildfire-induced carbon loss in untreated stands (red solid line; 
year 20), over 70% of carbon remains in the live carbon pool in the treatment scenario and 
continues to sequester carbon. In contrast, over 90% of the carbon in the untreated stand 
is transferred to the dead carbon pool during the wildfire event, and growth of surviving 
live carbon stock is surpassed by carbon emissions due to decay, resulting in net carbon 
emissions over the following years. Despite this fact, the implementation of effective forest 
restoration treatments (in terms of area treated and carbon removed per hectare) count as 
an intentional reversal under ACR’s standard (ACR 2018b). The carbon stock measure-
ment GHG accounting framework currently applied for forest-based carbon offset projects 
therefore excludes proactive wildfire, drought, or insect-related management in principle.

Forest restoration treatments are discouraged in several contexts under the carbon stock 
measurement GHG accounting framework as detailed above. From a carbon offset regis-
try’s perspective, there should be a strong incentive to integrate stochastic events such as 
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wildfire into project accounting, rather than handling it as an external risk, burdening the 
buffer pool. The risks to registries are real, especially under the protocols that require 100-
year permanence (e.g., CARB 2015). For instance, recent data suggest an average wild-
fire risk exceeding 40% over the entire 100-year project term for all California-based IFM 
projects registered under the compliance market with California’s Air Resources Board 
(CARB).1 A total of 16% of all IFM projects registered with CARB (2020b) are affected by 
this risk for involuntary reversal.

When implementing forest restoration treatments, the decreased risk of carbon loss due 
to wildfire is not benefiting the project proponent since carbon losses due to stochastic 
events such as wildfire are externalized. In the case of a wildfire, the project proponent is 
released from all carbon credit sale-related responsibilities such as permanence while the 
buffer pool covers for losses. Benefits associated with forest restoration treatments there-
fore accrue to the registry as a whole through a decreased risk to the buffer pool.

Once stochastic events are acknowledged as an integral (rather than external) risk to 
carbon offset projects in affected forests, it becomes apparent the high average stocking of 

Fig 2  Example for forest carbon stocking (above and belowground) over time in the absence (dotted lines) 
and presence of high-severity wildfire (solid lines) with (green lines) and without forest restoration treat-
ments (red lines) and delayed reforestation following a stand-replacing wildfire at year 10 (red solid line). 
Total stocking (above and belowground; live and dead carbon pools) and carbon loss due to forest restora-
tion treatments and high-severity wildfire are based on 19 sites sampled in the Sierra Nevada mountains by 
North and Hurteau (2011), while post-fire carbon flux data is model-based (see e.g., Harmon et al. 1987) 
for decay rates and assumes delayed reforestation for an untreated stand

1 The CAL FIRE wildfire risk map (CAL FIRE 2016) suggests a 0.41% average annual wildfire probability 
for the Northern Sierra Nevada, northern coastal range, and Klamath Mountains, where all California-based 
IFM projects are located (CARB 2020a). This wildfire risk map and the approach to use a pixel-average as 
a fireshed-wide annual wildfire probability are widely considered conservative since a pixel-based average 
might underestimate a fireshed-wide fire risk. A more realistic alternative to fireshed-wide fire risk quantifi-
cation could be to use the 75th percentile value or the product of the pixel values.
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a maximum carbon stock projection is misleading. If specific forest restoration treatments 
can predictably provide long-term atmospheric GHG reductions that are measured against 
the same standards as currently endorsed forest protocols—and the associated GHG emis-
sions can be cost-effectively proven through adherence to a stringent accounting proto-
col—a probability-based carbon offset protocol, or elements of it, should by definition be 
endorsable by carbon offset registries.

2  Accounting for GHG emissions in carbon offset markets

2.1  ISO GHG accounting principles

In the USA, all carbon offset registries (e.g., American Carbon Registry [ACR], Climate 
Action Reserve [CAR], Verra, Gold Standard, Plan Vivo, World Resources Institute), 
whether they deal with voluntary or compliance grade credits, are based on the same set of 
general (ISO) GHG accounting principles (ISO 2019). In the context of IFM carbon offset 
projects, the market-dominant registries in the USA (ACR, CAR, Verra) provide a close-
to-identical approach in how they implement ISO GHG accounting principles under their 
overarching standards and registry-specific IFM protocols.

Project-level ISO GHG accounting principles (ISO 2019) entail relevance (data and 
methods appropriate to the needs), completeness (include all relevant GHGs within rel-
evant spatial and temporal boundaries and other information), consistency (enable mean-
ingful GHG-related comparisons), accuracy (reduce bias and uncertainty while ensuring 
practicality), transparency (disclose relevant information), and conservativeness (ensure 
that project GHG benefits are not over-estimated).

A host of literature points out that these principles are subject to the accounting frame-
work (Marland et al. 2013) and to relative weighting depending on the accounting purpose 
(Buchholz et al. 2014; Wise et al. 2019). For instance, for carbon offset projects, complete-
ness might be paramount to conservativeness if potentially significant but uncertain GHG 
sources, sinks, or reservoirs (SSR) are excluded. Weighting of principles is especially rele-
vant during system boundary delineation (Eve et al. 2014) and baseline assessments (Ascui 
and Lovell 2011).

Besides the overarching accounting principles, the standard (ISO 2019) further provides 
important additional guidance on the following:

• Boundary delineation, i.e. the identification of all “relevant GHG sources and sinks 
controlled by the project, as well as those related to or affected by the project” (ISO 
2019). This assessment step includes leakage accounting.

• Baseline and project determination, quantification, and uncertainty assessment. A 
conservative baseline scenario should be chosen over other plausible baseline sce-
narios that perform equally in terms of other GHG accounting principles. Baseline 
and project periods “should be long enough to ensure that the variability in oper-
ating patterns are accounted for”. To stay program neutral, the ISO standard does 
not use the term “additionality” in this context. Adhering to the accounting princi-
ples needs to drive the quantification while actual measurements are not required 
per se. To ensure appropriate data quality, in-depth uncertainty analysis becomes 
more important if SSR measurements are not feasible (e.g., GHG emissions across a 
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landscape). Reversal risk or permanence assessment of GHG emission reduction or 
removal enhancement is part of this step.

• Monitoring, reporting, and verification (MRV). While monitoring plans are required 
and guidance is provided, verification is optional. However, if a public statement is 
made that a project adheres to ISO 14064-2 standards, both a public GHG report 
using a specified outline and a third-party verification are mandatory.

2.2  Implementing ISO GHG principles in carbon offset standards and IFM protocols

2.2.1  Adhering to ISO GHG principles under a probability-based carbon accounting 
framework

ISO GHG accounting principles underlie all relevant carbon offset registries to date. 
A probability-based carbon accounting framework would need to adhere to ISO GHG 
principles to the same extent as currently employed carbon stock measurement GHG 
accounting frameworks.

Relevance and completeness A carbon offset methodology based on a probability-based 
carbon accounting framework would need to cover and document all relevant information 
for the accounting of GHG reductions or removals across all mandatory (aboveground live 
tree, dead wood, harvested wood products) and optional (belowground live tree) SSRs with 
a specified de minimis threshold of the final calculation of emission reductions. Relevant 
and mandatory GHG emissions include  CO2, CO, CH4, and optional emissions from non-
methane hydrocarbons, particulate matter, and  NOx. To adhere to the completeness prin-
ciple, any decreases in carbon pools and/or increases in GHG emission sources must be 
included if they exceed the de minimis threshold.

Consistency and transparency Consistency would need to be ensured by providing a 
detailed step by step description of the carbon offset methodology and detailed documenta-
tion requirements. The carbon offset methodology would need to specify both baseline and 
project accounting steps and strive for a uniform data input and modeling approach with 
minimum expert opinion input.

Accuracy and conservativeness The reliance of model-based calculation of SSRs under 
both baseline and project scenarios under a probability-based carbon accounting frame-
work would require heightened efforts to ensure data accuracy. Accuracy can be ensured by 
restricting project-specific expert opinion inputs to a minimum and by specifying conserv-
ative model parameters to the largest extent possible. Wherever possible (e.g., aboveground 
live tree carbon), modeled stocks are measured periodically across the entire crediting 
period. Conservativeness is further ensured by detailed instructions for uncertainty quan-
tification (error propagation by accounting element) as far as practicality allows. Uncer-
tainties around emission reductions are captured by appropriate buffer pool and conserva-
tive emission savings estimates. In the context of forest restoration treatments for example, 
leakage effects through activity shifting or market effects can most likely be ignored since 
forest restoration treatment project activities typically include greater removal of forest 
products than assumed under the baseline scenario.

Mitigation and Adaptation Strategies for Global Change (2022) 27: 4 Page 7 of Ϧ21 4
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2.2.2  ACR implementation of ISO GHG accounting principles

Using the ACR standard (ACR 2018b) and IFM protocol (ACR 2018a) as an example 
for a leading carbon offset registry in the USA, we highlight (i) how registries currently 
implement ISO GHG accounting principles; (ii) how a probability-based carbon account-
ing framework, without violating ISO GHG principles, can be incorporated under revised 
standards as a stand-alone protocol for forest restoration treatments to, for example, lower 
emissions from wildfires; and (iii) how probability-based accounting can further assist in 
overcoming wildfire-related challenges in the current IFM accounting procedure.

Project-level ISO GHG accounting guidelines explicitly state that “in order to have 
broad and flexible application to different GHG project types and scales, this document 
outlines principles and specifies process requirements rather than prescribing specific cri-
teria and procedures” (ISO 2019). In this context, the ACR standard and IFM protocol 
acknowledge ISO GHG accounting principles as the accounting foundation. The ACR 
standard implements these principles along a subset of eligibility requirements:

• Real. The project yields quantifiable and verifiable emission reductions/removals;
• Emission or removal origin. The project proponent has direct and effective control over 

SSRs;
• Additional. GHG reductions and removal enhancements would not have occurred in the 

absence of the project;
• Permanence. Unintentional and intentional reversal risks are defined, considered, and 

mitigated. Monitoring for and reporting of reversals is in place and compensation 
mechanisms are defined;

• Leakage. Effects of project activities outside of project boundary are accounted for if 
beyond a defined threshold;

• Independently verified. Verification of emission assertions for a specific reporting 
period.

Below, we focus on the eligibility requirements for real, permanent, and verifiable emis-
sion reductions/removals. These are the eligibility elements where accounting for wild-
fire-related probability-based emissions challenges ACR’s current implementation of ISO 
GHG principles.

2.2.3  Real emission reductions

A carbon offset project must provide quantifiable GHG emission reductions or removals. 
Credits can only be issued once the emission mitigation activity has been conducted (e.g., 
ACR 2018b). Under an AWE probability-based carbon offset methodology, the mitigation 
activity is the forest restoration treatment management plan over the entire crediting period, 
starting with the initial round of forest restoration treatments. Once the project proponent 
commits to this management plan, and verification confirms completion of the initial for-
est restoration treatments, credits could be issued without violating the exclusion rule of 
“ex-ante” crediting, i.e. the issuance of credits “for GHG emissions reductions or removals 
when an emission mitigation activity has not occurred or is not yet verified” (ACR 2018b).

A potentially delayed GHG emission reduction can further pose a conceptual challenge 
where net GHG emission reductions get realized at a later stage during the crediting period 
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due to an initial reduction of forest carbon stocks induced by the forest restoration treat-
ments. In the context of an AWE carbon offset methodology, this initial stock loss tends 
to be higher for mechanical thinnings compared to prescribed burns (Goodwin et al. 2020; 
Liang et al. 2018) and can be delayed, particularly if contemporary wildfire probabilities 
are low (Krofcheck et al. 2017).

If concerns remain regarding the delay in GHG benefits from a climate benefit or risk 
perspective, future credits could be discounted based on when net benefits materialize. 
Though being a physical flow, discounting emissions is common practice (Timmons et al. 
2016; US Environmental Protection Agency 2014) since a tonne of  CO2 is in this case a 
proxy for a monetized damage caused by climate change. In this context, Tol (2009) notes 
discounting does not reduce the present value of future climate effects if the costs of such 
effects grow faster than the discount rate. However, the steep decline of long-term costs 
caused by a constant annual discount rate does not reflect true social values (Gowdy 2005). 
Hence, hyperbolic discounting or declining discount rates, where a high value is placed on 
near future benefits, followed by a sharp drop in the medium, and an asymptotic flattening 
into the distant future, can and has been widely applied in a climate change context (Arrow 
et al. 2014; HM Treasury 2018). The relatively short minimum crediting period of 40 years 
under the ACR IFM protocol (ACR 2018a) in principle fully discounts (eliminates) any cli-
mate benefits from project activities beyond this timeframe—which stands in stark contrast 
with a general consensus amongst sociology and economics scientists to apply compara-
tively small discount rates to potential damages in the distant future (Stern 2006).

Credit issuance could be based on initial forest restoration treatment completion. This 
early-stage issuance would be independent of the temporal aspects where positive net GHG 
emission reductions will occur at some time in the future. This approach is conceptually in 
line with a probability-based carbon accounting framework such as the AWE carbon offset 
methodology. It challenges, though only hypothetical in nature, an accounting approach 
that heavily relies on measured carbon stocks to verify real emission reductions. The issu-
ance of credits in the first period of a project for carbon stocks above a common practice 
baseline is a case in point for a bias towards measurable carbon stocks under the current 
forest carbon offset market concepts of all major registries (see also Section 2.2.5 on verifi-
cation). While arguably ensuring maintenance of above-average carbon stocks on the land-
scape, this accepted and current approach taken by all registries challenges additionality 
requirements where GHG emission reductions need to be directly tied to project activities 
executed during the crediting period. A discount rate for early-stage credits could partially 
assist in overcoming concerns associated with early-stage issuance.

2.2.4  Permanent emission reductions

2.2.4.1 Managing reversal Initial stock reduction In the example AWE framework we 
describe below, forest carbon stocks initially would be reduced through forest restoration 
treatments designed to affect wildfire behavior. ACR’s forest carbon offset protocols allow 
initial but short-term carbon stock reductions to accommodate project preparation activities 
such as vegetation removal for afforestation or reforestation projects (ACR 2017). ACR’s 
IFM protocol allows for an initial negative project stock change prior to the first credit 
issuance. However, “after the first offset issuance, negative project stock change is a Rever-
sal” (ACR 2018a). This exclusion of initial carbon stock reductions is a major barrier for 
implementing forest restoration treatments with the objective of reducing long-term GHG 
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emissions. Under this concept, the forest restoration treatments are considered an intentional 
reversal since initial carbon stocks are lowered—disregarding potential long-term effects for 
stabilizing carbon stocks above the baseline.

When implementing forest restoration treatments, carbon stocks could remain below a 
baseline for a prolonged period. For a successful AWE carbon offset project, this stock 
reduction would be offset by a positive (probability-based) balance of aggregated GHG 
emissions over the crediting period and should not be categorized as a reversal. The promi-
nence of avoiding carbon stock losses under current standards and protocols is rooted in 
verification concerns. Probability-based modeling of SSRs over time requires alternative 
verification steps compared to physical stock changes that can be measured (see verifica-
tion Section 2.2.5 below for more details). The requirement to avoid carbon stock reduc-
tions below the baseline and beyond the short term is protocol-specific and standard-
specific and not per se required by ISO’s GHG accounting principles. The hypothetical 
nature of baseline development, particularly for avoided conversion projects (CARB 2015), 
provides an example for overcoming a carbon stock-based bias, while adhering to ISO 
GHG principles (see also Section 2.2.5 on verification). For avoided conversion projects, 
an anticipated baseline is developed that assumes future carbon stock loss associated with 
land use change.

In the context of existing IFM protocols, as mentioned above, the currently practiced 
carbon stock measurement GHG accounting framework disincentivizes landowners willing 
to implement forest restoration treatments prior to or as part of an IFM project implemen-
tation. Carbon offset credits are generated in two ways: Initial credits are derived from car-
bon stocks above a given baseline (example in Figure 3a; variable x) followed by periodic 
credits generated through proven forest carbon stock increases (variable y). If forest resto-
ration treatments would be implemented at the beginning of an IFM project, fewer initial 
credits could be sold (Figure 3b vs. Figure 3a).

A probability-based GHG accounting framework could overcome this challenge by pro-
viding an average carbon stocking level expected over time (Figure 3c; red dotted line). 
This average carbon stock would be considerably lower than the initial carbon stock of an 
untreated stand (Figure 3b; red dot). It could be potentially increased substantially for a 
treated stand (Figure 3d; green dotted line). For the treated stand, adding both carbon credit 
types (Figure 3d; variable x and y) results in an only slightly lowered initial carbon credit 
potential compared to an untreated stand (Figure 3a; variable x) based on an alternative 
probability-based GHG accounting framework.

Note that Figure 3 provides a stand-level example for a wildfire occurring 10 years after 
project initiation. For a complete probability-based GHG accounting including wildfire 
emissions, stand-level carbon stocks and fluxes would need to be modeled out periodi-
cally across the entire project lifetime (e.g., every 5 years), for both treated and untreated 
stands within the assessment area and multiplied by the period-specific wildfire probability 
(PWFy=0-z). This fire probability can be static or variable to account for increased fire risk 
over time due to climate change. While the example presented here is restricted to a wild-
fire occurrence at year 10, a full probability-based GHG accounting framework would need 
to integrate annual wildfire probability over the entire project lifetime.

Reversal due to wildfire or other stochastic events—responsibilities and GHG account-
ing solutions Carbon offset registries handle wildfire occurrence and other stochas-
tic events as an unintentional reversal. While the occurrence of these stochastic events 
might be beyond a forest owner’s control, their outcome can frequently be mitigated by 

Mitigation and Adaptation Strategies for Global Change (2022) 27: 44 Page 10 of 21



1 3

management actions. Research over the past decade shows that a failure to better integrate 
wildfire management into carbon offset protocols poses a significant threat to the forest 
carbon offset market (e.g., Hurteau et  al. 2012). IFM protocols approach wildfire (and 
other disturbance) risk as external and therefore collectivize losses through a buffer pool. 
In case of wildfire occurrence, the project is terminated and the project proponent has no 
further liabilities (see also Figure 3a and b). Project contributions in terms of a percent-
age of generated credits are frequently minimal and based on a generic approach. Employ-
ing a generic wildfire risk assessment tool and treating wildfire occurrence as an external 
threat provided a bridge to operationalize forest carbon offsets in the first place. However, 
outsourcing risk and a simplistic risk assessment sets up registries for a perilous future 
with little understood risks to the buffer pool under an imminent climate that deviates from 
historic norms. For instance, Hurteau et al. (2012) estimate that total liability of a wildfire-
induced reversal for one project “would require buffer pool contributions from more than 
seven comparable projects to fully protect the registry”. Both subjects (outsourcing risk, 
generic risk assessment) emerge as major liabilities for carbon offset protocols. In terms 
of alternatives for generic risk assessments, recent advancements in data availability and 
modeling capacity provide cost-effective and powerful tools for fine-scaled project-level 

Fig 3  Average carbon stocks for stands affected by a wildfire in year 10 based on the generic example pre-
sented in Figure 1 and Figure 2. A carbon stock measurement GHG accounting framework as applied under 
the current ACR standard and IFM protocol results in project reversal (a) in case of wildfire occurrence 
(year 10) and discourages forest restoration treatments (b). As in existing IFM protocols, initial above-base-
line credit creation (variable x) would be paired with periodic credits (variable y) based on future carbon 
stocks and fluxes. All numbers are based on North and Hurteau (2011), generic in nature, and only intended 
to serve for conceptual guidance. A probability-based GHG accounting framework would not only offer the 
option to avoid project reversal in case of wildfire occurrence and absence of forest restoration treatments 
(c), but also provide incentives to implement forest restoration treatments (d). For a complete probabil-
ity-based GHG accounting including wildfire emissions, stand-level carbon stocks and fluxes would need 
to be modeled out periodically across the entire project lifetime (e.g., every 5 years) for both treated and 
untreated stands and multiplied by the period-specific wildfire probability (PWF)
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wildfire risk mapping (Hurteau et al. 2019). In terms of outsourcing wildfire risk, the cur-
rent approach creates perverse incentives in light of inherently unstable and high-risk car-
bon stocks. The current practice of letting forest owners tap into the buffer pool (invol-
untary reversal) defies landowner’s responsibilities towards stabilizing carbon stocks at 
healthy levels in forests with an inherent fire ecology.

A probability-based GHG accounting framework for IFM projects could both (i) incen-
tivize forest restoration treatments and (ii) provide a pathway to eliminate wildfire occur-
rence as an involuntary reversal. By using an average carbon stock estimate over the entire 
project lifetime (Figure 3d; green dotted line) including wildfire occurrence and discounted 
by wildfire probability, rather than initial carbon stocks (Figure 3b; red dot)—this approach 
would substantially ease the strain on buffer pools. Even if no active risk reduction for 
wildfire emissions is undertaken by implementing forest restoration treatments, a probabil-
ity-based GHG accounting framework could overcome wildfire-induced risks to the buffer 
pool (Figure 3d).

Under the current carbon stock measurement GHG accounting framework, the invol-
untary reversal of a project in a wildfire-driven ecoregion poses a challenge to the entire 
offset registry. At the same time, the large spatial scale of individual and aggregated car-
bon offset projects that incentivize forest restoration treatments through a probability-based 
carbon accounting framework could reduce the risk to the buffer pool for the region as a 
whole substantially. In consequence, stochastic events such as wildfire occurrence within a 
carbon offset project boundary would not be classified as reversal in the first place, but as 
an integral part of the ecological process.

2.2.4.2 Long-term permanence IFM projects under ACR currently provide strong incen-
tives for high current and near-term carbon stocks. Long-term permanence within and 
beyond the minimum crediting period of 40 years is dealt with through continuous MRV 
activities and the buffer pool in case of involuntary reversals. Considering the latest science 
(Graves et al. 2020; Krofcheck et al. 2019; McCauley et al. 2019), AWE carbon offset pro-
jects in wildfire-adapted ecosystems provide a stronger case for permanence then currently 
incentivized IFM projects, through a more deliberate shift towards stable carbon pools 
(reduced trees per acre, increased mean bole diameter)—not only in terms of potential car-
bon losses due to wildfire and other stochastic events. This climate beneficial outcome (e.g., 
Figure 4, black line) can be realized not only despite, but because of, an initial reduction in 
carbon stocks (Figure 4, light green bars). The current practice in carbon offset protocols 
and standards to value measurable carbon stocks above defensible probability-based carbon 
stock projections provides a temporal disadvantage to forest restoration treatments. Forest 
restoration treatments have a later-stage and permanent GHG benefit (see Section 2.2.3 on 
discounting future GHG benefits above) over projects with clear evidence of current, but 
potentially highly volatile and less permanent, “above average” carbon stocks. Any long-
term GHG benefit beyond the project lifetime is discounted by 100% under current IFM 
protocols. The question remains how to truly assess permanence in the context of credits 
generated at different points in time within the project lifetime.

2.2.5  Verifiable emission reductions

Verifying GHG emission reductions is comparatively straight forward for carbon offset 
projects where aggregated SSRs are dominated by physical carbon stocks. Terrestrial car-
bon offset projects are frequently measured against this “standard” in terms of real and 

Mitigation and Adaptation Strategies for Global Change (2022) 27: 44 Page 12 of 21



1 3

verifiable emission reductions. For instance, even the ISO GHG standard (ISO 2006) sug-
gests that in terrestrial GHG removal projects, “only the sum of changes of carbon stocks 
in GHG reservoirs or carbon pools are likely to be considered. Resulting GHG removal 
enhancements would then be the sum of changes in carbon stocks in the GHG reservoirs or 
carbon pools less any increase in GHG emissions of all GHGs by GHG sources”. This bias 
towards carbon stock measurement GHG accounting frameworks puts probability-based 
GHG accounting frameworks into an initial bind in terms of verifiability.

However, as Marland et  al. (2013) point out, “it is an adage of accounting to moni-
tor what you can measure, but there is concern that some elements can potentially be 
very important, yet very difficult, to evaluate.” In this context, a probability-based GHG 
accounting approach breaks new ground vs. a carbon stock measurement GHG accounting 
framework and requires alternative pathways for verification.

As for carbon stock measurement GHG accounting frameworks, tracking of carbon 
stocks (potentially restricted to unburnt areas) will remain a vital verification tool through-
out the crediting period. Forest carbon stock tracking outcomes can inform if growth 
and yield modeling assumptions require updates and confirm if management commit-
ments were met (e.g., follow-up forest restoration treatments implemented over time). For 
instance, an intentional reversal can be triggered by a failure of following through with the 
original management plan. In this context, it would be important to keep management obli-
gations flexible to allow for incorporating new scientific insights into future forest restora-
tion treatment types and placements while meeting protocol requirements.

MRV requirements should also endorse additional future credit issuance if newly devel-
oped and relevant datasets or models provide sufficient evidence for their existence. For 
instance, we expect rapid advancements in probability-based calculations of AWEs due to 

Fig 4  Case study example of full GHG accounting for AWE due to fuel treatments, employing a probabil-
ity-based carbon accounting framework, in the mixed conifer forests of the mid-elevation Sierra Nevada 
Mountain Range, USA (see also SI 2). Columns present cumulative additional GHG emissions (positive 
values) and GHG emission savings (negative values) from fuel treatments over a baseline (no fuel treat-
ments) scenario. Initial stock reductions followed by forgone carbon sequestration due to a reduction in for-
est stocks (light green columns) are balanced over time by GHG emission reductions; most notably delayed 
reforestation (dark green columns) and wildfire emissions (red, orange, gray columns). Aggregated net 
GHG emissions for the entire fireshed including untreated stands are negative over time (black line). GHG 
emission savings are modeled for wildfire occurrence over the entire fireshed in 5-year intervals and dis-
counted by an annual constant fire probability
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delayed reforestation following high-severity wildfires (Tubbesing et al. 2019), and mod-
eling non-CO2 GHG emissions such as particulate matter (Schweizer et al. 2018).

Until now, the reliance of probability-based GHG accounting frameworks on large 
datasets and complex modeling approaches was a major obstacle in terms of practicality 
or, in terms of ISO GHG principle-based language—accuracy. The recent advent of both 
modeling platforms such as ArcFuels10 (Vaillant et al. 2013) and large consistent datasets 
such as region-wide tree lists (e.g., Riley et al. 2018) provide the foundation for this new 
approach to carbon offset protocol development.

2.3  Example for probability‑based carbon accounting based on ISO GHG principles: 
avoided wildfire emissions

2.3.1  Outlining a suggested AWE carbon offset methodology

Besides improvements to existing IFM methodologies discussed above, a probability-based 
carbon accounting framework can be employed, for instance, to co-finance forest restora-
tion treatments that lower wildfire emissions through carbon offset markets. To achieve 
this goal, it is essential that the ISO GHG principles outlined above can be met in an AWE 
carbon offset methodology (see SI 1).

We suggest an AWE carbon offset methodology that employs probability-based wildfire 
models to calculate GHG emissions in the absence (baseline scenario) and presence (pro-
ject scenario) of forest restoration treatments that are additional to current practice (see SI 
1 for an in-depth description of the AWE accounting methodology). Using field data, mod-
eling, and probabilistic functions, this approach is fundamentally different from IFM meth-
odologies where landscape carbon stock changes are solely identified using measured data. 
GHG emission savings are calculated prior to the project start and issued following the for-
est restoration treatment implementation. For instance, modeled on the IFM carbon offset 
protocol of the American Carbon Registry (ACR 2018a; see SI 1), GHG emission savings 
are quantified for each 5-year interval over the entire crediting period of 40 years. Wild-
fires covering the entire landscape are modeled for each interval under defined weather 
scenarios, GHG emission-relevant metrics are collected and processed, and wildfire-related 
GHG emissions are discounted by the location-specific wildfire probability. GHG emission 
savings can be refined and verified based on subsequent project area measurement assess-
ments to confirm stand growth response to initial forest restoration treatments.

When assessing AWE reductions from forest restoration treatment implementation, the 
following relevant SSRs can in principle be quantified (

Box 2):

• Forest carbon. Increase in stored carbon on the designated landscape (project area) over 
time, particularly in larger, more fire-resistant trees (Foster et  al. 2020; Hurteau and 
North 2010; Stephens et al. 2009). This results from reducing individual wildfire sever-
ity and potentially size on both the directly treated areas and untreated areas through 
fuel limitation (Collins et al. 2008). Treating even a small portion of the landscape can 
result in a decrease in probability of areas outside those treated areas being burned 
severely, referred to as the “treatment shadow effect” (Finney et al. 2007; Moghaddas 
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et al. 2010). A decline in forest restoration treatment effectiveness over time (e.g., Col-
lins et al. 2011) can be countered by follow-up treatments.

• Wood products and renewable energy. Utilization of forest restoration treatment 
byproducts as (i) long-lived wood products that sequester carbon and displace fossil 
fuel-intensive alternatives to wood products such as concrete and steel; and (ii) renew-
able energy production that displaces fossil fuel energy alternatives (Buchholz et  al. 
2016).

• Fossil fuel emissions required for harvesting and processing of wood. This also requires 
accounting for fossil fuel emissions associated with harvest and processing of wood 
products.

• Change in non-CO2 GHG emissions. Wildfires can contribute substantial non-CO2 
GHG emissions such as particulate matter  (PM2.5),  CH4, CO,  NOx, and  SO2 (McClure 
and Jaffe 2018; Urbanski et al. 2018). Changing low-frequency high-severity wildfire 
patterns to higher-frequency lower-intensity wildfires can reduce non-CO2 GHG emis-
sions including particulate matter, i.e. smoke (Pierce et al. 2017; Schweizer et al. 2018).

• Preservation of forest. Forest restoration treatments can reduce the amount of forest that 
experiences delayed reforestation, i.e. a vegetation type change from forest to grassland 
or shrub types lasting at least several decades, compared to the baseline, through mod-
erating fire severity and size.

Box 2: Avoided wildfire emissions 
accounting concept.

To quantify forest restoration 
treatment impacts on reducing 
emissions from wildfires (WF), all 
relevant carbon pools -- forest 
carbon, wood products, and biomass 
-- are accounted for across the entire 
fireshed/project area.  This requires 
an ecologically relevant integration of 
wildfire probability (fire chance), 
wildfire behavior, delayed 
reforestation, and forest carbon 
accounting. Treatments to reduce 
high-severity fires will impact fire 
behavior within their direct footprint, 
and indirectly beyond their direct 
footprint (“treatment shadow effect”). 

Benefits from reduced atmospheric 
CO2 concentrations through avoided 
delayed reforestation following high-
severity fires are also considered in 
this methodology.

2.3.2  Implementing an AWE carbon offset methodology

To implement an AWE carbon offset methodology, a few major elements deviate from 
current practices under carbon stock measurement GHG accounting frameworks.
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Boundary delineation The project area would need to be a contiguous spatial unit. 
Through the wildfire shadow effect, AWE benefits can be expected substantially beyond 
the forest restoration treatment locations. This fact provides an incentive to maximize the 
project area across a larger landscape and use one or multiple firesheds to maximize offset 
credit generation. A fireshed is delineated based on fire regime, condition class, fire his-
tory, fire hazard and probability, and potential wildland fire behavior of a scale that allows 
the ecologically relevant integration of wildfire probability, wildfire hazard, and forest car-
bon accounting (Bahro et al. 2007). Trade-offs between project acreage and credit genera-
tion occur when a threshold is crossed where only minimal additional AWE benefits can be 
accounted for while at the same time data collection and monitoring, reporting, and verifi-
cation (MRV) costs exceed additional project revenues. This relationship provides a built-
in automation towards conservativeness in AWE accounting, i.e., forgoing potential AWE 
benefits which are due to project activities, but realized beyond the project boundary. There 
is also no risk of double counting AWE carbon benefits beyond the treatment area itself. 
If other IFM carbon offset projects are located adjacent to an AWE carbon offset project 
(i.e., within the fireshed), a carbon offset registry would in fact experience a reduced risk 
to its overall buffer pool for involuntary reversals due to a reduced risk of carbon loss due 
to wildfire based on fuel treatment activities in adjacent locations (see also Section 2.2.4.1 
for reversals due to wildfire). Leakage effects are unlikely to occur in AWE carbon offset 
projects (see previous Section 2.2.1).

Baseline and project determination, quantification, and uncertainty assessment Two 
important topics for AWE baseline and project quantification include risk and uncertainty 
assessments. For instance, carbon offset project risks include reversals, i.e. situations 
where the project results in higher GHG emissions than the baseline. In case of intentional 
reversals, i.e. reversals due to a project proponent’s choice of activities, sold offset credits 
have to be redeemed (internalized risk), whereas unintentional reversals result in a pro-
ject termination with no further liabilities to a project proponent (externalized risk). The 
active management for wildfire behavior under an AWE carbon offset project (internal risk 
management) provides a challenge for existing carbon offset registries since wildfire is cur-
rently handled as an unintentional reversal, i.e. a limited responsibility for wildfire behav-
ior on behalf of a project proponent.

Uncertainties in AWE carbon offset methodology are prominent since GHG offsets are 
modeled based on probabilistic functions. This stands in contrast to a “measured carbon 
stock” approach that dominates current forest-based carbon offset protocols where current 
and future carbon stock projections can be verified through inventories. A defensible AWE 
carbon offset methodology therefore relies on extensive uncertainty assessments in its 
modeling procedure and data input. Uncertainties in potential AWE carbon offset projects 
are further augmented by potentially delayed AWE benefits into late stages of the crediting 
period.

Monitoring, reporting, and verification The probabilistic nature of AWE credit genera-
tion provides unique MRV challenges. While only indirectly related to credit generation, 

2.3.2  Implementing an AWE carbon offset methodology

To implement an AWE carbon offset methodology, a few major elements deviate from 
current practices under carbon stock measurement GHG accounting frameworks.
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periodically repeated project carbon stock measurements would validate model assump-
tions. Furthermore, we expect rapid advancements in data availability (e.g., climate fore-
casts, wildfire probabilities) and modeling approaches in the coming decade. Optional 
updating of AWE calculations periodically with new data/models could provide opportuni-
ties for additional refined credit generation throughout the project lifetime.

Additionally, AWE benefits are likely to be reliant on repeated forest restoration treat-
ments throughout the project to maintain treatment effectiveness (Collins et al. 2011). Con-
firming the implementation of scheduled forest restoration treatments would be an impor-
tant element of MRV plans.

Application to other disturbance mitigation management scenarios Forest manage-
ment activities can also mitigate long-term ecosystem carbon losses in disturbance contexts 
that include more complex forest health interactions between other disturbance agents (e.g., 
insects) and wildfire. For example, salvage harvesting following eastern spruce budworm 
(Choristoneura fumiferana) mortality in balsam fir (Abies balsamea) and spruce (Picea 
spp.) stands can lead to reduced life cycle (i.e., including harvested wood products) carbon 
emissions over 40 years compared to not salvaging under certain stand structural condi-
tions (Gunn et al. 2020). However, this comes at the cost of greater near-term emissions 
(10-20 years), similar to the AWE example above. The probability of future fire occurrence 
following spruce budworm mortality is quite variable depending on many factors, but the 
framework we present here potentially could be applied to salvage decisions where stability 
of future carbon stocks are explicitly considered alongside economics and salvage harvests 
result in significantly reducing future fire risk (James et al. 2017).

3  Conclusion

Stochastic events such as wildfire, drought, or insect damage can pose a major threat to car-
bon stocks in forests. Forest carbon offset methodologies account for these threats as exter-
nal forces, and their occurrence and subsequent carbon stock loss results in an involuntary 
project reversal, with the carbon liabilities transferred to a registry-wide buffer pool, and 
project termination. This approach is based on a carbon stock measurement GHG account-
ing framework endorsed by leading carbon offset registries that prioritizes (i) high initial 
and (ii) measurable carbon stocks. As a solution, we demonstrate how a probability-based 
GHG accounting framework can provide a framework to integrate stochastic events in 
carbon accounting for offset registries without violating ISO GHG accounting principles. 
Besides improving permanence metrics and a reduced threat to a registry’s buffer pool, 
such a probability-based approach could also incentivize forest restoration treatments in 
cases where their implementation results in long-term carbon stabilization. Using a pro-
posed avoided wildfire emission carbon offset methodology that would incentivize forest 
restoration treatments to lower wildfire emissions through reduced wildfire severity and 
size, we show how a probability-based GHG accounting framework can be implemented 
cost-effectively and meet verification standards.
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