Minnesota COVID-19 Model

The model population has the same distribution of ages and underlying conditions as Minnesota.

The basic reproduction number (R_0) measures how many susceptible people an infectious person infects on average. When a novel (new) virus first appears in humans, everyone is susceptible and the virus can spread quickly at first. The speed of this spread is measured by the value of:

$$R_0$$

The model simulates how well various social distancing measures slow this spread by hypothetically reducing the number of daily contacts people make. Fewer contacts between susceptible and infectious people lowers the effective reproduction number:

$$R_e$$

If these interventions can slow the spread of the virus so that R_e is reduced to < 1, the epidemic will die out.

In the model, older people or those with one or more underlying conditions experience higher rates of hospitalization and mortality from COVID-19, as is observed in real world data.

Model outputs include projected daily counts of COVID-19 cases, cases occupying ICU beds, and deaths. These projections help inform health care capacity planning.

Other key information used in the model:
- Time between infection and symptoms
- How long people can get others sick
- Percentage of infections that are detected
- Number of hospital beds available

For a complete list of model parameters and values, visit: https://mn.gov/covid19/

Updated 04/09/2020

© Regents of the University of Minnesota. All rights reserved