▪ Overview of changes in Version 3 and their impacts
▪ Three key scenarios/new model capabilities
 ▪ Stay-at-home order
 ▪ Testing
 ▪ CDC criteria for return (and medical advancement)
▪ Supplemental information
Timeline of Minnesota COVID-19 Model

▪ Version 1: March 2020
 ▪ Based on early data available at the time
▪ Version 2: April 2020
 ▪ Included more specifics about Minnesota cases
▪ Version 3: May 2020
 ▪ Integrates new details and capabilities
▪ Ongoing model updates planned within available capacity
The University of Minnesota and MDH created the Minnesota COVID-19 model as a tool to inform response strategies and resource planning.

Updated model documentation is available online at [Minnesota COVID-19 Modeling](https://mn.gov/covid19/data/modeling) including:

- References for parameter values
- Underlying data
- Model equations governing transitions of the population through COVID-19 health states
Why the Need for New Model Versions?

- COVID-19 remains **in early stages** and new evidence is emerging

- Ongoing model updates are needed to:
 - Reflect the **growing understanding** of COVID-19 transmission and outcomes
 - Incorporate newly emerging **data from the U.S. and Minnesota**
 - Refine projections by fitting model **Minnesota data on observed mortality and hospitalization data**
 - Add **new model capabilities** to illustrate potential mitigation strategies
Data Considerations

- Epidemic and evidence **still very new**
- Extent and impact of **key metrics** uncertain
- Evolving **clinical protocols** with halting dissemination of evidence
- **U.S. case data are limited and incomplete**, affecting availability of robust estimates
Limited U.S. data

- First studies with U.S. patients in late March and April
 - 4,226 cases in U.S. study: outcomes (illness & death) were unknown for 2,001
 - 5,700 patients hospitalized with COVID-19 in NYC area: discharge or death status was known for only 46%
 - Among hospitalized Minnesota COVID-19 patients: nearly 32% remain in the hospital
Five Key Changes to Model Version 3

1. Structural changes to address
 - **Asymptomatic** infections
 - Deaths occurring **outside of hospital**

2. Restricted ICU metric to **ventilated cases**

3. Updated parameter estimates using **newly available US data**
4. Estimate uncertain parameters through model calibration, including

- Proportion of 70+ year-olds dying in non-hospital settings
- Reduction in contacts under social distancing and under stay-at-home order

5. Fitted model to Minnesota deaths and hospitalizations through April 25
What?

- **Less time** to epidemic peak
- Some **upward movement** in estimated total mortality

Why?

- Calibration to **rising MN deaths**
- **Mitigation less effective** than assumed for:
 - Initial physical distancing (37.6%, not 50%)
 - Stay-at-home order (55.1%, not 80%)
- Changes to **ICU mortality** assumptions & data

Estimates of mitigation effectiveness corrected from presentation on May 13.
Model Changes: “Stay-at-Home Order in Place for 6 Weeks”

<table>
<thead>
<tr>
<th>Scenario 4*</th>
<th>V 2.0 (incl. uncertainty)</th>
<th>V 3.0 (incl. uncertainty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks until peak</td>
<td>16 (13 to 21)</td>
<td>13 (11 to 13)</td>
</tr>
<tr>
<td>Weeks until ICU capacity reached</td>
<td>16 (13 to 21)</td>
<td>13 (12 to 13)</td>
</tr>
<tr>
<td>Top ICU (ventilator) demand</td>
<td>3,700 (2,700 to 4,900)</td>
<td>3,600 (2,000 to 5,200)§</td>
</tr>
<tr>
<td>Mortality (cumulative for 12 months)</td>
<td>21,800 (9,900 to 36,000)</td>
<td>29,000 (16,000 to 44,000)</td>
</tr>
<tr>
<td>Mortality (through end of May)</td>
<td>N/A</td>
<td>1,700 (1,400 to 2,000)</td>
</tr>
</tbody>
</table>

*Stay-at-Home order in place for a total of 6 weeks (through: May 8, 2020), followed by physical distancing and longer-term stay-at-home recommendation for most vulnerable; § Assuming no ICU capacity constraints
Scenarios & Model Capabilities: An Illustration of Trade-offs
▪ Model-derived estimates:
 ▪ R_t (April 11 through April 25): 1.88
 ▪ Cumulative detection rate: 5.15 percent
 ▪ Percent ever infected: 4.84 percent

▪ Estimates from case counts:
 ▪ Doubling rate: 19.9 days
 ▪ Community transmission (no known contact): 30.8%

Doubling rate is three-day moving average. Full reporting has five- to seven-day data lag. Community transmission among cases with exposure determined through case interviews; it represents a seven-day average.
Unmitigated and Extended Stay-at-Home Orders

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Date of peak infection</th>
<th>Top ICU/vent demand</th>
<th>Mortality (full year)</th>
<th>Mortality (thru May)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1 Unmitigated (blue)</td>
<td>May 11</td>
<td>4,991</td>
<td>57,035</td>
<td>42,032</td>
</tr>
<tr>
<td>Scenario 5 SHO till 5/18 (red)</td>
<td>June 29</td>
<td>3,397</td>
<td>29,030</td>
<td>1,441</td>
</tr>
<tr>
<td>Scenario 6 SHO till 5/31 (green)</td>
<td>July 6</td>
<td>3,006</td>
<td>28,231</td>
<td>1,388</td>
</tr>
</tbody>
</table>

Stay-at-home order followed by three weeks physical distancing (reduction of contacts by 37.6%) and ongoing stay-at-home recommendation for most vulnerable (50%).
Extended Stay-at-Home Orders & Testing

Extended Stay-at-Home Orders & Testing

Scenario 6
- SHO till 5/31 (green)

Scenario 5a
- Worst testg: 70% sens
- 10k tests (orange)

Scenario 6b
- Best testg: 95% sens
- 20k tests (purple)

<table>
<thead>
<tr>
<th></th>
<th>Scenario 6</th>
<th>Scenario 5a</th>
<th>Scenario 6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of peak infection</td>
<td>July 6</td>
<td>June 29</td>
<td>July 13</td>
</tr>
<tr>
<td>Top ICU/vent demand</td>
<td>3,006</td>
<td>3,150</td>
<td>2,444</td>
</tr>
<tr>
<td>Mortality (full year)</td>
<td>28,231</td>
<td>26,914</td>
<td>22,589</td>
</tr>
<tr>
<td>Mortality (thru May)</td>
<td>1,388</td>
<td>1,430</td>
<td>1,375</td>
</tr>
</tbody>
</table>

At this point the impact of testing applies only to tested individual by reducing their rate of contact (assuming isolation for confirmed positive cases); tests are distributed to “I” states and non-“I” states, through probabilities of testing access. Reduced contact through contact tracing is currently not built into the model.
Extended Stay-at-Home Order, CDC Guidelines for “Opening Up” and Medical Advancement

Scenarios Overview

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Date of peak infection</th>
<th>Top ICU/vent demand</th>
<th>Mortality (full year)</th>
<th>Mortality (thru May)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 SHO till 5/31 (green)</td>
<td>July 6</td>
<td>3,006</td>
<td>28,231</td>
<td>1,388</td>
</tr>
<tr>
<td>7 CDC Opening (aqua)</td>
<td>July 6</td>
<td>1,034</td>
<td>26,294</td>
<td>1,388</td>
</tr>
<tr>
<td>8 CDC Opening + Tx (pink)</td>
<td>July 6</td>
<td>1,034</td>
<td>25,392</td>
<td>1,388</td>
</tr>
</tbody>
</table>

Rx treatment (Tx) only for hospitalized patients, 30% reduction in LOS & mortality
Daily Deaths – All Scenarios

Scenarios:
- 1
- 5
- 5a
- 6
- 6b
- 7
- 8
Cumulative Infections – All Scenarios
Uncertainty Estimates for Key Model Outcomes
Consideration for Next Steps

- More and better data from U.S. epidemic
- Refined scenarios
 - Treatment: evidence on home treatment
 - Testing: incorporate impact of contact tracing
- Enhancements: cycling mitigation
Team Acknowledgement

UMN
- Marina Kirkeide
- Gregory Knowlton
- Abhinav Mehta
- Richard MacLehose
- Kumi Smith
- Kelly Searle
- Ran Zhao
- Katherine Harripersaud
- Sara Lammert

MDH
- Pam Mink
- Alisha Simon
- Erinn Sanstead
- Plus a large team of epidemiologists

We also wish to thank a number of anonymous reviewers of the programming code, the underlying methodology and data, as well as peers across the country whose expertise benefited this work on behalf of Minnesotans.
Scenarios with Uncertainty Estimates

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Unmitigated</th>
<th>Stay-at-home until 5/18</th>
<th>Stay-at-home until 6/1</th>
<th>Stay-at-home until 5/31 – 20k tests per day, 95% sens</th>
<th>Stay-at-home until 5/18, 10k tests per day/75% sens</th>
<th>CDC reopening strategy</th>
<th>CDC reopening strategy + medical advancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks until Peak (range)</td>
<td>7 (6 to 7)</td>
<td>14 (13 to 14)</td>
<td>15 (14 to 16)</td>
<td>16 (15 to 17)</td>
<td>14 (13 to 15)</td>
<td>15 (13 to 26)</td>
<td>15 (13 to 26)</td>
</tr>
<tr>
<td>Weeks until ICU capacity reached (range)</td>
<td>4 (4 to 4)</td>
<td>14 (13 to 15)</td>
<td>15 (14 to 16)</td>
<td>17 (16 to 18)</td>
<td>14 (13 to 15)</td>
<td>Does not reach capacity (24 to 27)</td>
<td>Does not reach capacity (25 to 26)</td>
</tr>
<tr>
<td>Top ICU Demand (range)</td>
<td>4,991 (2,761 to 6,928)</td>
<td>3,397 (1,875 to 5,039)</td>
<td>3,006 (1,577 to 4,739)</td>
<td>2,444 (1,223 to 3,667)</td>
<td>3,150 (1,719 to 4,644)</td>
<td>1,034 (547 to 2,520)</td>
<td>1,034 (480 to 1,822)</td>
</tr>
<tr>
<td>Mortality – 1 year (range)</td>
<td>57,035 (31,036 to 79,580)</td>
<td>29,030 (15,726 to 43,868)</td>
<td>28,231 (15,834 to 43,152)</td>
<td>22,589 (12,903 to 32,012)</td>
<td>26,914 (14,804 to 40,608)</td>
<td>26,294 (14,617 to 37,269)</td>
<td>25,392 (14,044 to 35,179)</td>
</tr>
<tr>
<td>Mortality – end of May (range)</td>
<td>42,032 (24,736 to 53,908)</td>
<td>1,441 (1,082 to 1,554)</td>
<td>1,388 (988 to 1,494)</td>
<td>1,375 (980 to 1,481)</td>
<td>1,430 (1,069 to 1,543)</td>
<td>1,388 (988 to 1,494)</td>
<td>1,388 (988 to 1,494)</td>
</tr>
<tr>
<td>Percentage of population infected – 1 year (range)</td>
<td>87.5% (87.4% to 87.5%)</td>
<td>79.4% (79.0% to 80.4%)</td>
<td>78.7% (77.9% to 80.3%)</td>
<td>73.3% (70.8% to 75.7%)</td>
<td>77.8% (77.1% to 78.9%)</td>
<td>71.0% (69.3% to 76.5%)</td>
<td>71.0% (69.3% to 76.5%)</td>
</tr>
</tbody>
</table>
Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmitigated basic reproduction number (R0)</td>
<td>2.38</td>
<td>3.87</td>
<td>3.87</td>
</tr>
<tr>
<td>Transmission probability (per contact between infected/susceptible persons)</td>
<td>0.009¶</td>
<td>0.035*</td>
<td>0.0295*</td>
</tr>
<tr>
<td>Latent period</td>
<td>5 days</td>
<td>5 days</td>
<td>5.2 days</td>
</tr>
<tr>
<td>Infectious period</td>
<td>8 days</td>
<td>8 days</td>
<td>7.8 days</td>
</tr>
<tr>
<td>ICU duration</td>
<td>22.6 days</td>
<td>10.3 days</td>
<td>8 days</td>
</tr>
<tr>
<td>Hospitalization duration</td>
<td>8 days</td>
<td>13.3 days</td>
<td>11 days</td>
</tr>
<tr>
<td>Increased mortality factor with ≥ 1 comorbidity</td>
<td>7.6</td>
<td>7.6</td>
<td>1.0 (not used)</td>
</tr>
<tr>
<td>Increased mortality factor if ICU capacity exceeded</td>
<td>1.5 to 16.5</td>
<td>1.5 to 16.5</td>
<td>Assume death</td>
</tr>
<tr>
<td>Hospitalized cases requiring ICU (age ranges)</td>
<td>5.0% to 70.9%</td>
<td>5.0% to 70.9%</td>
<td>11.9% to 29.6%*</td>
</tr>
<tr>
<td>ICU mortality rate (age ranges)</td>
<td>0.000 to 0.111</td>
<td>0.000 to 0.111</td>
<td>0.0005 to 0.779§</td>
</tr>
</tbody>
</table>

¶ Corresponds to an R0 of 2.38; *Corresponds to an R0 of 3.87; * Restricted to ventilated cases
§ Probability of dying
Model Parameters Estimated Through Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of cases detected prior to start of model simulation*</td>
<td>0.119 (input)</td>
<td>0.01</td>
<td>0.021</td>
</tr>
<tr>
<td>Hospitalized infections (age ranges)</td>
<td>0.1% to 27.3%</td>
<td>0.1% to 27.3%</td>
<td>10.3%**</td>
</tr>
<tr>
<td>Proportion of people aged 70 or older with a symptomatic infection die at home</td>
<td>N/A</td>
<td>N/A</td>
<td>0.139</td>
</tr>
<tr>
<td>Proportion of infections which are mild or asymptomatic</td>
<td>0.0 (input)</td>
<td>0.25 (input)</td>
<td>0.41</td>
</tr>
<tr>
<td>Estimated contact reduction caused by the social distancing</td>
<td>0.5 (input)</td>
<td>0.5 (input)</td>
<td>37.6%</td>
</tr>
<tr>
<td>Estimated contact reduction caused by the stay-at-home order</td>
<td>0.8 (input)</td>
<td>0.8 (input)</td>
<td>55.1%</td>
</tr>
</tbody>
</table>

*Case detection rate only used for model initialization

**Calculate age-specific hospitalization probabilities, prop hosp, the relative proportion of symptomatic cases by age is multiplied by the calibrated values for the probability of 80+ year-olds who are hospitalized.
Uncertainty - Percentage Cumulative Infections

The graph illustrates the percentage cumulative infections over time for different scenarios. The x-axis represents time in days, ranging from 0 to 300, while the y-axis shows the percentage cumulative infections, ranging from 0 to 100.

The scenarios are represented by different colors: blue for Scenario 1, yellow for Scenario 5a, and magenta for Scenario 8.
Uncertainty – Prevalent Hospitalizations
Uncertainty – Prevalent Infections
Uncertainty – Daily Deaths