

CADMUS

Minnesota TRM 3.2 Proposed Measure Update Discussion

September 28, 2020

Agenda

Welcome

Schedule

Measures

- Variable speed pool pumps

- Strip curtains

- Water heater jacket insulation

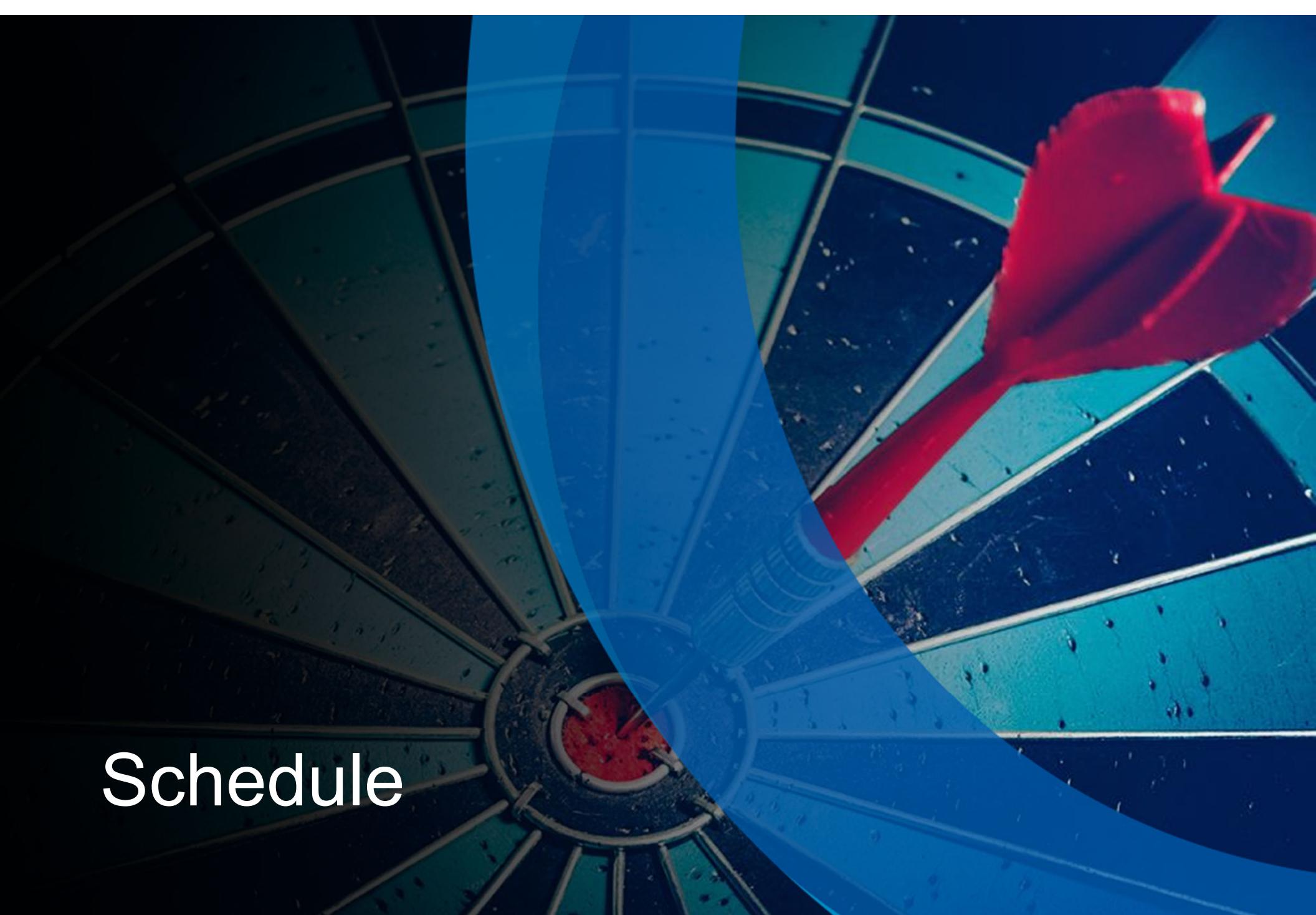
- Lighting controls

- Line voltage smart thermostats

- ECM fan motors

- Evap fan speed controls and motors

Additional items


Welcome

CADMUS

Roll Call

Group	Staff
Cadmus	Matt Gluesenkamp
	Amalia Hicks
	Jenna Lipscomb
Dept of Commerce	Adway De
	Anthony Fryer
	Adam Zoet
	Mary Sue Lobenstein
	Laura Silver
Applied Energy / MERC	Joe Reilly
	Lisa Rafferty
Avant Energy	Kim Lillyblad
CEE	Ben Schoenbauer
	Carl Nelson
	Jon Blaufuss
	Mike Bull
	Will Nissen
CenterPoint	Eric Johansen
	Ethan Warner
City of Buffalo	Joe Steffel
Dakota Electric	Dave Reinke
Energy Insight	Charlotte Currier
	Matt Haley
	Tanuj Gulati
CERTs / UMN	Alexis Troschinetz
GDS Associates	Travis Hinck
MDU Resources	Jeremy Fischer
	Matthew Shoemake

Group	Staff
Energy Platforms	Leo Steidel
Franklin	Dean Laube
	Joe Plummer
Fresh Energy	Ben Rabe
	Dylan Sievers
Great River Energy	Jeff Haase
	Kelsey Kopp
Hunter Douglas	Stacy Lambright
Michaels Energy	Bryce Dvorak
	Darlene Weber-Scott
Missouri River Energy	Kurt Hauser
	Dan Lindquist
	Chad Trebilcock
MN Power	Jon Sullivan
	Jason Grenier
	Jon Fabre
Otter Tail	Luke Meech
	Jeff Schlotfeld
	Scott Hackel
Slipstream	Scott Pigg
	Scott Schuetter
	Jennifer Li
SMMPA	John O'Neil
Tricklestar	Thad Carlson
	Cody Williams
	Nick Minderman
Xcel	Ashly McFarlane
	Charlie Hood
	Kara Jonas
MEEA	Caroline Pakenham
Elevate Energy	Lawrence Kotewa
	Carrie Donohue

Schedule

Schedule

Item	Appx. Dates
Measure updates	9/4 - 9/30
Update discussion meeting	9/28
Discussion via e-mail / Huddle	9/28 - 10/16
Draft TRM submitted in eDockets	10/23
eDockets comments due	11/11
eDockets replies due	11/25
Final TRM submitted in eDockets	12/16

- Use time between now and ~10/16 to dial in updates via e-mail + Huddle
- Goal is a draft TRM ~10/23 that requires little modification
- After draft TRM, comments via eDockets only

Measures

Strip curtains

- Update to submitted version: Modify only; required by code
- ΔkWh savings = $\Delta\text{kWh}/\text{SqFt} \times A$
- A = input or default from table

Facility Type	Pre Existing Curtain Condition	Energy Savings (kWh/SqFt)	Demand Reduction (kW/SqFt)	Default Doorway Area (square feet)
Supermarket - Cooler	Existing curtain	37	0.0042	35
	No curtain	108	0.0123	
	Unknown	108	0.0123	
Supermarket - Freezer	Existing curtain	119	0.0136	35
	No curtain	349	0.0398	
	Unknown	349	0.0398	
Convenience Store - Cooler	Existing curtain	5	0.0006	21
	No curtain	20	0.0023	
	Unknown	11	0.0013	
Convenience Store - Freezer	Existing curtain	8	0.0009	21
	No curtain	27	0.0031	

- Originates from 2016 Pennsylvania TRM
 - “All the assumptions in this protocol are based on values that were determined by direct measurement and monitoring of over 100 walk-in units in the 2006-2008 evaluation for the CA Public Utility Commission.”
- Used in WI, AR, and IL as well

Variable speed pool pumps

- Original note was that variable-speed is code, but not quite true.
- $\Delta \text{kWh savings} = V_{\text{POOL}} \times N_{\text{TURNOVERS}} \times \text{Days} \times (1/\text{WEF}_{\text{BASE}} - 1/\text{WEF}_{\text{EFF}})$
- V, N, and Days from 2013 paper by (other) CEE
- Previous: $\text{EF}_{\text{BASE}} = 2 \text{ gal/Wh}$, $\text{EF}_{\text{EFF}} = 8.37$ (avg in CA database)
- New:

Equipment Class			Baseline WEF	
Pool Pump Type	hhp range	Motor phase	Standard	Value Range
Self-priming, w/ filter	hhp < 0.13	single	5.55	5.55
	0.13 ≤ hhp < 0.771		-1.3 × ln(hhp) + 2.9	5.55 at 0.13 hhp 3.24 at 0.77 hhp
	0.771 ≤ hhp < 2.5		-2.3 × ln(hhp) + 6.59	7.16 at 0.771 hhp 4.49 at 2.49 hhp
Non self-priming, w/ filter	hhp < 0.13	any	4.60	4.60
	0.13 ≤ hhp < 2.5		-0.85 × ln(hhp) + 2.87	4.6 at 0.13 hhp 2.09 at 2.49 hhp
Pressure cleaner booster	any	any	0.42	0.42

Mean WEF from ES		
Base	Eff	Count
3.7	10.4	41
6.1	7.7	152
4.6	8.2	8
0.4	0.6	5

- Prefer to list defaults for WEF_{BASE} and WEF_{EFF} ? Table on right.

DHW jacket insulation

- Added electric DHW, changed formula format, checked defaults
- Formula previously read $U \times A$, now reads A / R

Unit kWh Savings per Year =
$$(A_{base} / R_{base} - A_{insul} / R_{insul}) \times (T_{hot} - T_{ambient}) \times \text{Hours} / (ElecEff * 3,412)$$

Electric-fueled storage water heater only

Unit Peak kW Savings = Unit kWh Savings per Year / Hours
Electric-fueled storage water heater only

Unit Dth Savings per Year =
$$(A_{base} / R_{base} - A_{insul} / R_{insul}) \times (T_{hot} - T_{ambient}) \times \text{Hours} / (GasEff * 1,000,000)$$

Gas-fueled storage water heater only

TRM	R _{BASE}	R _{INSUL}	% of MN Savings	Source
MN	12	18	100%	PA TRM for R _{BASE} , 2020 online research shows R6 added is typical
Mid-Atl	8	18	250%	VEIC review for R _{BASE} , assume R8 added
PA	12	20	120%	Conservative est. of R-12 for R _{BASE} , assume R8 added.
IA	14	24	107%	None
VT	12	22	136%	None
Others	Actual			

Lighting controls

- Previous: occupancy and daylighting only, from older IL TRM
- New: Updated SF for those, plus:
 - Personal tuning
 - Task tuning
 - Multiple
 - Networked lighting controls (NLC)
- Also note and subtract baseline control savings
- SFs from:
 - 2011 LBNL meta analysis (88 studies)
 - 2017 DLC study on NLC (114 buildings)
 - Seventhwave / Slipstream work on task tuning
- Building-level available for many, but average presented too

Line voltage smart thermostats

Algorithm + baseline

- $\Delta\text{kWh} = [\text{Heating kWh of home}] \times \text{HSF} / [\text{Deemed # of t-stats per home}]$
- Get [Heating kWh of home] from RECS
 - Census Division 4 (IA, KS, MN, MO, NE, ND, SD)
 - SF detached and attached for SF, MF 2-4 and MF 5+ for MF
 - Built-in electric units installed in walls, ceilings, basements, or floors
 - Normalized Division 4 kWh by HDD to produce MN zones estimate

Zone	Baseline Baseboard Heater Household kWh	
	Single family	Multifamily
Zone 1 (Northern MN)	14,184	3,357
Zone 2 (Central MN)	12,824	2,906
Zone 3 (Southern MN/Twin Cities)	11,527	2,612

- Compare to 17,974 kWh for 2.3 tons heating
(mean MN Power HP size, TRM EFLH, HSPF = 3.412)
- [Deemed # of t-stats per home] = 6 for SF, 4 for MF
from 2017 WA State paper, root source RTF

Line voltage smart thermostats

Heating savings fraction

- Deeming **HSF** is difficult
- Possible savings from bimetallic → electronic sensor upgrade
 - Electronic / thermistor sensor may produce savings over bimetallic even if manual control before and after (reduced deadband and droop)
 - Possibly more true for line voltage than low voltage
 - Evidence for this is mixed, 0% - 7% from 2 studies
- Certainly savings from manual → smart control upgrade
 - But no studies of this upgrade for line voltage thermostats
- Other studies of low-voltage thermostats:
 - Mixed to smart, electric, coastal: 10% to 12% savings
 - Mixed to smart, gas, upper Midwest: 5% to 7% savings
 - Manual to smart, gas, upper Midwest: 9% to 13% savings
 - Programmable to smart, gas, upper Midwest: 3% savings (1 study)
- RTF uses 5% (elec sensing) + 1% (smart) = 6%
- Current recommendation: HSF = 10%

ECM fan motors

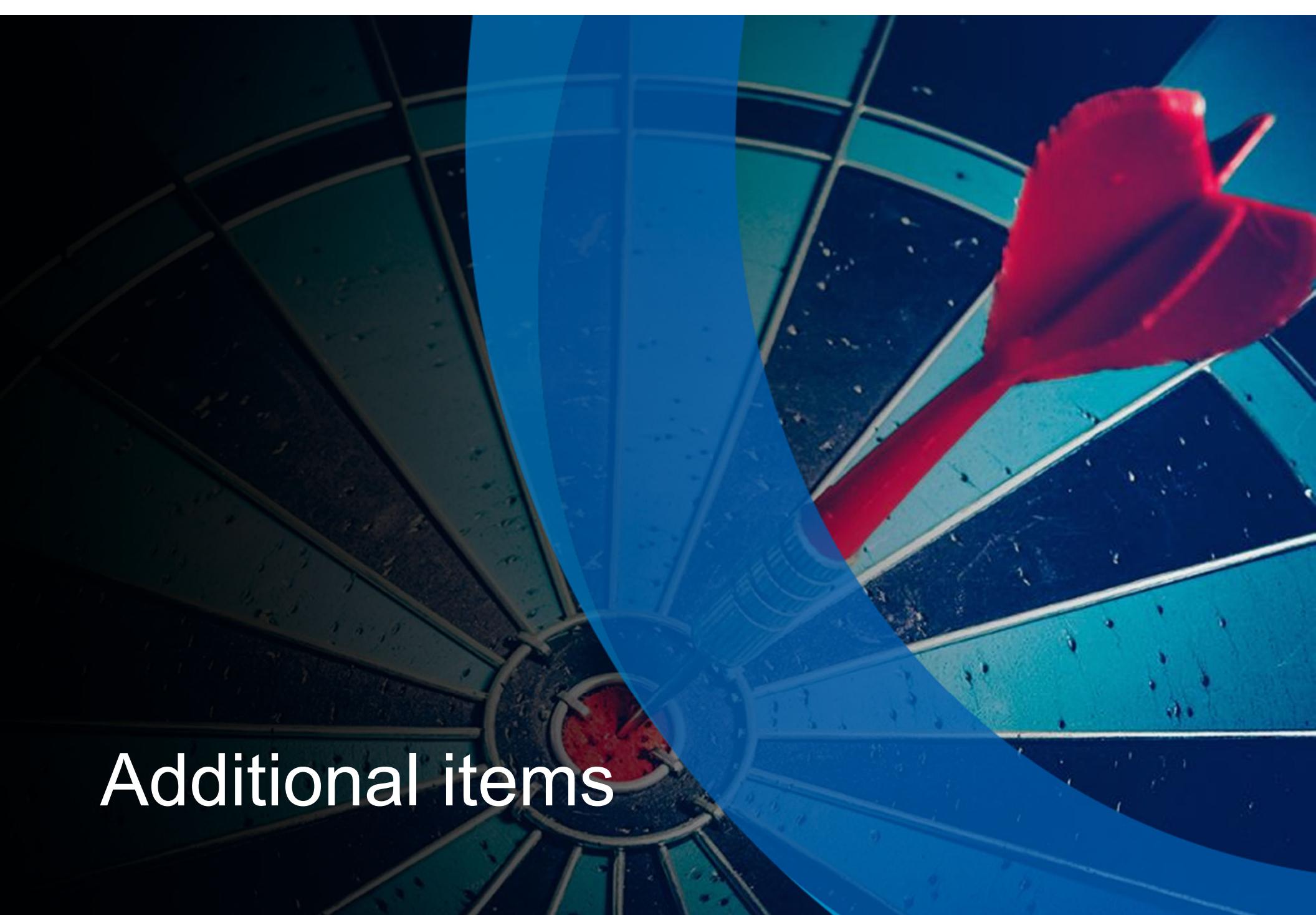
Current measure

- NOT furnace fan motors; those follow separate rule and must be ECM
- NOT 1 - 200 hp motors; those are the C/I Motors measure and follow NEMA / EPACT standards (Appendix C)
- This is an “...electronically commutated motor (ECM) being applied within fan-powered terminal boxes, fan coils, and HVAC supply fans on small unitary equipment.”
- Current MN form: $\Delta\text{kWh} = \text{CFM} \times [\text{Box Size Factor}] * \text{HOU}$
 - HOU = standard commercial EFLH
 - BSF = 0.32 W/CFM if $< 1,000$ CFM
= 0.21 W/CFM if $\geq 1,000$ CFM
 - Algorithm and factors from MA TRM, which cites “engineering analysis developed at National Grid” (no link or title, cannot find)

ECM fan motors

Possible updates

- 2018 MN Energy code, following 2018 IECC, requires motors equal to or larger than 1/12 hp (82 W) and less than 1 hp (746 W) must be ECMS or have an efficiency of 70%.
 - If 2018 MN Energy code should be followed, this measure is Replace Working only; no New Construction or Replace on Fail
 - Note 2015 MN Energy code follows 2012 IECC and does not require this
- Add exhaust
 - Only other TRM with this application is WI, which uses lighting HOU for “occupied ventilation” – will research more but this may be best option
 - Plus 8,760 for 24/7 ventilation
- Other algorithms
 - If Replace Working only, less need to make algorithm more robust, but...
 - PA: W_{BASE} and W_{EFF} are user inputs, or hp + assumed efficiency, EFLH
 - WI: hp is user input + assumed efficiency, EFLH or lighting HOU
 - NY: W_{BASE} is user input, assumed efficiency upgrade, EFLH or lighting HOU


Evap fan ECMs, speed controls

Algorithm forms

- $\Delta kW_{ECM} = (W_{BASE} - W_{EE}) \times [Load Factor] \times [Duty Cycle] \times (1 + 1/COP) \times CF$
- $\Delta kW_{CTRLS} = (W_{FULL} \times \%_{FULL} - W_{LOW} \times \%_{LOW}) \times [LF] \times [DC] \times (1 + 1/COP) \times CF$
- Shaded pole, PSC, ECM, full speed, low speed wattages, other inputs from papers, data, RTF assumptions, 8,760 HOU
- Other TRMs take similar approach, using various sources

Possible update

- §431.306 requires ECM or 3-phase for evap fan motors < 1 hp & < 460 V
 - Will parse against algorithms and update shortly
- Btu/Wh requirements (via Annual Walk-In Energy Factor or AWEF) were updated 7/10/2020
 - Seven walk-in cooler types + sizes, AWEF scales with capacity
 - Believe still room for motor upgrades

Additional items

Boiler baselines

- Residential and res-sized commercial boilers, < 300 kBtu/h
- Federal code, [10 CFR Part 430](#):
 - Made before 9/1/2012: 80% AFUE
 - Made 9/1/2012 - 1/14/2021: 82% AFUE (MN TRM 3.0, 3.1 value)
 - Made on or after 1/15/2021: 84% AFUE - noted in C+S workbook in 2018
- MN TRM 3.2 applies 1/1/2022
 - This is one year of sell-through
 - Apply 84% AFUE for 3.2 (?)
- Future note, [10 CFR Part 431](#):

Boiler type, size (kBtu/h)	Current Code / TRM	Code on 1/10/2023
Hot water $\geq 300, \leq 2,500$	80% TE	84% TE
Hot water $> 2,500$	82% CE	85% CE
Steam natural draft, $\geq 300, \leq 2,500$	77% TE	81% TE
Steam natural draft, $> 2,500$		82% TE
Steam except nat draft, $\geq 300, \leq 2,500$	79% TE	81% TE
Steam except nat draft, $> 2,500$		82% TE

Apply for 2024 - 2026
Triennial? One year of
sell-through.

Other items

- Res ASHP: $SEER_{BASE}$ 13, $HSPF_{BASE}$ 7.7 → 14 and 8.2
- Commercial lighting: Hope to add new lighting types
- Correct a few references
- Correct / clarify some equation parentheses and examples
 - Steam traps
 - Insulation
 - Air purifiers
- Add clarification to terms in the energy recovery ventilator paper, small tweak to values
- Will be noted in TRM front table, also posted to Huddle with tracked changes for easy comparison

Water kWh factor

- Perhaps around 0.005 kWh / gal for MN
- Likely ~5 - 20% adder for aerator measures
- Likely < 1% adder for CIP
- Unclear path to determining factor for MN
- No issues raised regarding single factor applied, even if water source in one territory and water use in another?
- Continue to keep in mind

Thank You!