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Executive Summary

High-efficiency technologies like air source heat pumps (ASHPs) have significant potential to improve
space heating efficiency and reduce energy costs for houses in cold climates. ASHP technology has been
available for many years, but until recently, technological limitations caused concern about efficiency
and reliability during the coldest months of the year in climate zones 6 and 7. Recent generations of
ASHP have improved with the addition of an inverter-driven compressor and updates to the refrigerant,
making the systems better suited for cold-climate heating. The inverter-driven compressor allows the
compressor speed to modulate and increase capacity during periods of colder outdoor air temperatures.
The increase in efficiency and operating capacities of cold-climate air source heat pumps (ccASHP)
provide an opportunity for energy efficient space heating for homes without access to natural gas
heating, a market typically underserved.

Cold-climate air source heat pumps are available as both central-ducted systems (Figure 1) and ductless
systems (Figure 6). Both system types are available with single and multi-zone indoor units. While this
project focused on single-zone systems, multi-zone systems are expected to perform similarly.

Central-ducted systems are designed and installed to meet the full load of the home by distributing heat
through forced air ductwork. Ductless systems deliver heat to a specific area of a home through a single
interior head with no ductwork. In cold-climate applications, air source heat pumps typically require a
backup system to provide heat when cold outdoor air temperatures limit the heat pump capacity of
ccASHPs, or prevent the system from operating. The integration between the heat pump and the backup
systems are important design and installation considerations that can drastically impact the
performance of a system. Ducted systems typically use a propane furnace as a backup. These backups
take over the load of the system at an outdoor air temperature when heat pump capacity is no longer
sufficient. This temperature, about 10°F, is based on the house load and system size. Homes with
ductless systems typically do not have central ductwork. These homes often rely on electric resistance
baseboards for backup heating.

Cold Climate Air Source Heat Pumps
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Figure 1. Whole home-ducted cold-climate air source heat pump

Figure 2. Ductless cold-climate air source heat pump

The Center for Energy and Environment conducts field research on emerging technologies with the
potential to reduce energy use in Minnesota. Air source heat pumps have been of particular interest due
to their potential to significantly improve energy efficiency. A field study was necessary to evaluate this
new technology and understand how the system would perform in actual installations. In 2015, CEE
started its field assessment with a CARD grant and additional support from Great River Energy and the
Electric Power Research Institute (EPRI).

CEE developed a field test methodology to characterize ccASHP and understand their potential in
Conservation Improvement Programs (CIP). The methodology focused on several key phases. First,
Minnesota characterization data was used to develop site selection criterion to best represent the
Minnesota market for ASHPs. Once the sites were identified, equipment was selected from a range of

Cold Climate Air Source Heat Pumps
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manufacturer and installation types to look at the full range of available technology. Detailed monitoring
equipment was then installed with the ASHP system to characterize the systems performance in the real
world. Finally, data was collected and analyzed to characterize equipment performance and compared
to the performance of baseline systems. The analysis included energy consumption, operating costs,
impact of the cold-climate on system performance, occupant comfort, and a characterization of system
efficiency over the range of Minnesota temperatures.

Cold-climate air source heat pumps have three types of heating operation. Figure 3 shows the operation
of the ducted ccASHP in one of the monitored sites. The plot shows the coefficient of performance
(COP) or the ratio of energy delivered to the home to energy consumed in electricity or propane. The
three modes of operation are heat pump heating (ashp.htg.on), backup heating (Ip.htg.on), and defrost
mode.

Heating events where only the heat pump was used typically had the highest COPs, around 1.3 at the
lower temperature change point (10°F) and increasing to about 3.5 in the shoulder heating seasons
(around 50°F to 60°F). While the outdoor air temperature has the largest impact on the COP, as the
figure shows, heating cycles at the same OAT did have a range of COPs. Secondary factors on cycle COP
include the rates of operation of components in both the indoor and outdoor units.

The second type of heating operation was the backup furnace mode. These events occurred at outdoor
temperatures below the point where the ASHP was expected to meet the full load of the home (10 °F
for how these systems were sized).

The final mode of operation was defrost. When the ccASHP is operational and outdoor conditions are
below freezing, there is a risk that frost can form on the outdoor coil. To prevent this, ccASHP systems
run in defrost mode by reversing the system and transferring a small amount of indoor heat back to the
outside. There is a lot of variation in the defrost performance, because defrost can turn on mid-heating
cycle. There are also times in an event when only the defrost is running, and almost no heat is provided
to the home. This results in a COP near 0, because almost all of the heat goes to the outdoor unit to
keep it from frosting. Some events have higher COPs because the heat pump has been on for a long
time, and is only active for a small fraction of the event run time.

Cold Climate Air Source Heat Pumps
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Figure 3. Heating performance of the ducted ccASHP at Site 01

d208_Site 2: Events
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type * ashp.htg.on = defrost * Ip.htg.on

The high-resolution data was compiled to determine the annual system performance. The findings from
this research show opportunities for residents and utilities to reduce total site energy by 35% to 50%.
These savings may be attributed to climate, ASHP type, and the system the heat pump replaced, but in
all cases, ccASHPs saved homeowners and renters significant amounts of energy and money. Figure 4
shows reductions in site energy consumption from switching to a ccASHP. Detailed data collection at
each site allowed system performance curves to be developed. The performance data allowed for
estimates of ccASHP savings across a range of baseline heating systems and installation locations. Table
1 summarizes those results.

Cold Climate Air Source Heat Pumps
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Figure 4. Propane and electricity use for the ccASHP and baseline heating systems at each site
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Overall, CEE research found that ccASHP performed to their rated specifications for both system
capacity and efficiency (coefficient of performance or heating seasonal performance factor). With
proper sizing, installation, and integration with backup heating systems, ccASHPs are an attractive
heating system replacement for homes with propane or electric heating.

Many electric utilities and co-ops in Minnesota have existing ASHP rebate programs that can be
modified to include the benefits of heating with ccASHPs. The project recommends that these programs
consider installation requirements to ensure the desired heating performance is met. One method
would be to provide a tiered rebate structure. For example, a low rebate could be provided for ASHP
systems installed only for cooling, a middle level rebate for systems designed for cooling and shoulder
season heating, and the highest level rebate for systems designed for cooling and heating through the
winter.

Cold Climate Air Source Heat Pumps
Center for Energy and Environment
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Background

Introduction

This report describes the Center for Energy and Environment’s (CEE) cold climate air source heat pump
(ccASHP) field assessment that was supported by a grant from the Minnesota Department of Commerce,
Division of Energy Resources, through the Conservation Applied Research and Development (CARD)
program. Great River Energy and the Electric Power Research Institute provided additional support. The
findings presented here are from six sites monitored during the 2015 to 2016 and 2016 to 2017 heating
seasons. ASHP systems are widely used for space heating in climates with mild heating seasons, and
with recent upgrades these systems can also meet the majority of a home’s heat load in colder climates.
The greatest potential for ASHP adoption is in cold-climate regions where natural gas is not available for
space heating because ASHPs can offset the use of more expensive delivered fuels. For homes with
electric resistance heat, ASHPs can result in a significant reduction in electrical use.

ASHP technology has improved with the addition of an inverter-driven compressor and updates to the
refrigerant, making the systems better suited for cold-climate heating. The inverter-driven compressor
allows the compressor speed to modulate and increase capacity during periods of colder outdoor air
temperatures. Manufacturers claim that these new, cold-climate systems are able to transfer heat into
homes at outdoor air temperatures at and below 0°F. The Northeast Energy Efficiency Partnerships
(NEEP) has created a set of specifications to identify ccASHPs, which include variable capacity
compressor, coefficient of performance (COP) at 5°F 2 1.75 at maximum capacity, and a heat system
performance factor (HSPF) > 9! (Northeast Energy Efficiency Partnerships 2017).

Cold-climate air source heat pumps are available as both central ducted systems (Figure 5) and ductless
systems (Figure 6). Both system types are available with single- and multi-zone indoor units. While focus
of this project was single-zone systems, multi-zone systems are expected to have similar performance.
Central-ducted systems are designed and installed to meet the full load of the home by distributing heat
through forced air ductwork. Ductless systems deliver heat to a specific area of a home through a single
interior head with no ductwork. In cold-climate applications, air source heat pumps typically require a
backup system to provide heat when the cold outdoor air temperatures limit the heat pump capacity of
ccASHPs, or prevent the system from operating. The integration between the heat pump and the backup
systems are important design and installation considerations that can drastically impact the
performance of a system.

1 Some system types require an HSPF > 10.

Cold Climate Air Source Heat Pumps
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Figure 5 Central ducted air soure heat pump system

Figure 6 Ductless mini-split heat pump system

A ccASHP has three basic heating modes of operation. The first mode is heat pump operation. In this
mode the heat pump transfers heat from the outdoors into the home, heating the house in the most
efficient manner. The second mode is backup heating. For propane based central systems, the backup

Cold Climate Air Source Heat Pumps
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heating mode is the operation of a propane furnace. These systems are often called flex fuel heat
pumps. For ductless systems the most common backup option is electric resistance baseboard heat. The
final mode is the defrost mode. This mode is engaged when outdoor conditions are cold enough that the
condensate on the outdoor coil may freeze and ice up the coil. The furnace and the heat pump fire up
simultaneously to prevent frosting, with the refrigerant running in the reverse mode. This moves heat
from the furnace into the refrigerant and through the outdoor coil, warming the outdoor unit and
preventing frost. For ductless systems or other systems with only an electric backup option, a ceramic
heater in the outdoor unit warms the coils to prevent frost. This mode of operation is the least efficient
because the backup heating is less efficient than the heat pump, and it uses output from the backup
heat to warm the exterior coils instead of the home. It is important to characterize the amount of time
operating in each of these modes to understand the actual installed performance of these systems.

Figure 7 Heating capacity and coefficient of performance for Trane's ducted ccASHP
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Figure 5 shows the heating capacity and COP values provided by Trane for the XV20i model of ccASHP
which has a reported HSPF = 10 (Northeast Energy Efficiency Partnerships 2017). This system can deliver
63% of the design condition capacity at 5°F. A traditional ASHP without a variable capacity compressor
cannot reach this COP and heating capacity at similar outdoor air temperatures.

Cold-climate air source heat pumps have the potential to meet a large fraction of home space heating
loads. However, in a climate as cold as Minnesota’s, especially in the northern regions of the state, there
are significant fractions of the heating load that cannot be met by the heat pump alone.

Cold Climate Air Source Heat Pumps
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Justification

Cold-climate air source heat pump technology has advanced significantly in the five years since the last
CARD study of the technology. Therefore, a precise and detailed field assessment of new advancements
in this technology was necessary. The characterization of the installed performance and energy savings
in Minnesota as well as an economic analysis of the technology were also necessary to achieve the full,
state-wide, energy savings potential of this equipment. In addition, funding to study these aspects of
ccASHPs is needed to help Minnesota’s electric municipals, and cooperative utilities take full advantage
of a technology that has the potential to provide significant energy savings to their customer base.

Cold-climate air source heat pumps can improve the space heating of many homes, with the potential to

increase the efficiency from 80% to 100% with a furnace or electric resistance heater to 130% or greater.

This potential improvement represents a large opportunity for utility conservation programs. As with
any new technology, there are several real world problems that need to be understood to truly assess
this technology, and these issues are discussed in detail throughout this report to shed light on these
technical issues with ccASHPs and their impact on actual energy use and savings in Minnesota homes.

The advancements in commercially available ASHP technology in the past five years allow a new-
generation ASHPs to provide a much larger fraction of the heating load than previous generations. A
field study was needed to verify the amount of the heating load that ASHPs actually meet. While
manufacturer specifications and system sizing should allow for reasonable estimation and protection,
there were issues such as freeze protection and the actual functionality of the ASHP lock-out
temperature that need to be verified in the field to determine actual performance, as this type of
characterization was difficult to predict without real world experiences. The heating performance of this
technology has been studied and shown promising in more moderate heating climates such as the
pacific northwest (Larson et al. 2013 and Davis and Robison 2008) and the northeast (Williamson and
Aldrich 2015). This work shows the potential of ccASHPs to heat efficiently and meet large fractions of
the space heating needs of homes, but detailed testing in Minnesota’s colder climate in necessary to
validate that performance under those conditions.

In addition to technical issues, there are also broader policy and utility program issues that impact
adoption of ccASHPs. The significant improvement in system efficiency that comes with ASHPs make
these systems ideal candidates to replace less efficient baseboard heating. These systems also have the
potential to replace heating systems with other fuel types and, while this project looked at replacing
systems using delivered fuels, natural gas supplementation or replacement is also possible. Fuel
switching and beneficial electrification are becoming an increased area of interest to policy makers and
utility managers, especially with changing energy sources of the electrical grid, commonly referred to as
the “greening” of the grid. Because ASHPs could contribute to this, it is important to understand the
performance of ASHPs in the field and how they integrate with the gird and the backup systems of other
fuel types as it comes time to make important decision around electrification. This project provides the
technical knowledge based on the installed performance of these systems to help characterize the
expected performance of ccASHPs under a broad range of conditions requires to make those decisions
in the future.

Cold Climate Air Source Heat Pumps
Center for Energy and Environment
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Relevance to CIP Goals

In Minnesota, 16% of homes are heated with either propane or heating oil (U.S. Census Bureau 2010).
Price increases and shortages in delivered fuels create a market demand to reduce reliance on delivered
fuel for space heating. During the 2013 to 2014 heating season, propane prices spiked from $1.67 to
$4.61 per gallon in Minnesota (EIA 2016) due to a shortage that was attributed to cold weather, a large
damp corn crop that required more propane than in other years for drying, and fuel transportation
constraints (Levenson-Faulk 2015). When prices increase and shortages occur, the only alternative to
delivered fuels for many rural residents is the use of portable electric heaters. In extreme cases, a large
increase in the number of homes using electric resistance space heaters can cause increases in electric
use and peak demand. The high efficiency of ccASHPs can help reduce reliance on delivered fuels for
space heating in cold weather states such as Minnesota. During periods of very cold temperatures when
some ccASHPS do not have adequate capacity to meet heating load, a furnace or electric resistant heat
can be used as backup.

Minnesota’s Conservation Improvement Program (CIP) benefits Minnesotans by identifying and
incentivizing effective measures that decrease emissions and reduce energy costs. Several utilities
across the state offer rebates through CIP for ASHPs based entirely on their seasonal energy efficiency
ratio (SEER) rating. However, the current rebates do not reflect the full benefit of the heating
capabilities of the new ccASHPs. Much of the savings from ccASHPs come from replacing other space
heating systems that are less efficient but go unrecognized under state policy because they also use
other fuels (i.e. not electricity) and current policy excludes savings associated with fuel switching. Under
current Minnesota regulations, with the exception of certain low-income customers, there is no way to
credit savings in deliverable fuels towards utility CIP goals. Furthermore, historically CIP programs have
not encouraged customers to switch fuel sources in order to achieve increased efficiency. While CIP
provides an excellent policy structure for achieving electric and natural gas savings, Minnesota has no
comparable structure or funding in place for achieving heating oil and propane savings.

Methodology

Several key research questions need to be answered before the potential of ASHP can be achieved. The
methodology of this field study was designed specifically to address these research questions and
provide answers and guidance for facilitating the inclusion of ASHPs in Minnesota’s CIP programs.

The methodology focused on several key phases. First, generic Minnesota characterization data was
used to develop site selection criterion to best represent the Minnesota market for ASHPs. Once the
sites were identified, equipment was selected from a range of manufacturer and installation types to

look at the full range of available technology. Detailed monitoring equipment was then installed with

the ASHP system to characterize the systems performance in the real world. Finally, data was collected

and analyzed to characterize the equipment performance and address each research question.
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Research Questions

The unresolved issues for ccASHPs fell into two categories. The first was cold weather performance and
the second was the policy and programmatic aspects of ASHPs. Recent changes to the refrigerant
system of ccASHPs allow for operation down to 0°F and even operation of some systems down to -13 °F.
This new generation of equipment improves the capacity and effectiveness of ASHPs to operate under a
greater portion of heating conditions in Minnesota, considerably reducing electricity use and further
limiting the need for backup heating use. Previous field studies in locations with heating seasons that
are comparable to Minnesota were limited to short-term, basic measurements on older equipment.
Increasing the application of ASHPs in utility CIP offerings required more comprehensive field testing to
assess the performance and measured energy usage compared to the baseline system in Minnesota. For
that reason this study was needed to access the reliability of ASHPs with different backup heating
system types as well as installation costs, annual fuel savings, and operations/maintenance. This data
would be able to support utility incentive programs and encourage increased market growth.

In terms of the unresolved issues related to policy and programs, ASHPs have the potential to be a good
option to offset delivered fuels that are used for space heating. Reduced reliance on delivered fuels has
several large benefits that are especially important when there is a shortage of delivered fuels. For
homeowners, the benefit is that ASHPs can significantly reduce their use of delivered fuels in the time of
highest demands, saving a considerable amount of money. For utilities, the benefit is that ASHPs can
reduce the use of electric resistance space heaters at times when delivered fuel costs are high or fuel
supply is low. Current incentive programs focus on ASHPs as a replacement to electric space heating,
and many of the additional benefits of ASHPs are difficult to evaluate with traditional policies, incentive,
and CIP structure. To begin this, the primary analysis in this study focused on replacing electric
resistance heat and reducing delivered fuel consumption.

Site Selection

Site selection was based on two factors. The first factor was whether a home was a good fit for a cold
climate air source heat pump. The second factor focused on selecting sites that were as representative
of the potential market as possible. Based on these two factors, six sites were chosen for field
monitoring.

While cold-climate air source heat pumps have a wider range of applications, not all Minnesota homes
were a good fit for this technology and this project. Homes were excluded either because of issues with
the installation or operation of a heat pump system of for a project specific reason, such as inability to
instrument the home, additional heating sources what could not be measured, or unique housing
characteristics that made the site unrepresentative. Table 2 summarizes the selection criteria as well as
the homes that were ultimately selected.
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Table 2. Site Selection Criteria

Requirement Parameter Ducted Ductless System Installed
System Criteria
Criteria
CCASHP Heating Forced Air Electric Ducted: 4 Forced air
requirement Distribution Resistance or Ductless: 2 ER
Hydronic
ccASHP Heating Load 4ton or less No Criteria Ducted: 536, 606, 652,
requirement and 799 Therms/yr
Ductless: NA
CCASHP Floor Plan No Criteria Open enough for  Ducted: NA
requirement ductless install Ductless: Yes and Yes
Project Heating Fuel Propane Electric Ducted: 4 Propane
Requirement Ductless: 2 Electric
Project Cooling Have of need Have of need Ducted: 4 had AC
Requirement cooling cooling Ductless: 1 had AC, 1
wanted AC
Project Additional sources = Minimal Minimal Ducted: 4 None

Requirement

market
representation

market
representation
market
representation

of heating (ie
fireplaces, space
heaters,etc)
Electric utilities

Location

Equipment

Range of munis/co-ops/utlities
represented

Range of heating loads

Northern and Central/Southern

Homes

Ductless: 1 None, 1
minimal

Dakota Electric (x2),
Goodhue County, Lake
Regional Elec,
Arrowhead, East
Central
Yes

Metro (x2), South,
Northeast (x2)

ASHP systems were installed in six Minnesota homes. The ASHPs selected were designed for cold
climate operation with a traditional heating system as backup (either a propane furnace or electric
resistance heat). Each system was installed so that the ccASHP could be deactivated and bypassed

allowing the system to be run as either (1) a ccASHP with the existing heating system as backup or (2) an
existing traditional system (the baseline system, without the ASHP). These two modes of operation were
alternated through a full heating season to allow for a direct comparison of the two systems over the
full range of outdoor conditions

A total of six ccASHP were installed. Four of the systems were centrally ducted whole house units (Figure

5) and two were ductless systems (Figure 6). All of the systems used variable speed compressors, often
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described as inverter driven technology, allowing the system to change operation speeds and
modulation rates depending on temperatures and heating loads. This allows for increased capacities and
colder temperature operation.

For this study each of the four ducted systems were designed with a propane furnace as back-up for
both the alternate mode operation as well as to meet the load of the home at the coldest outside
temperatures. The indoor coil of these systems was installed in the furnace duct-work much like a
traditional air conditioning system. The ducted systems relied on the furnace air handler fan to move air
over the heat pump indoor coil to transfer heat to the ductwork and then the home.

The two ductless systems were designed and installed to meet only a fraction of the homes’ total load;
each home had electric resistance baseboard heat in addition to the ductless system. The ductless units
were sized to meet the load of the room or series of rooms with open air flow between them and the
ductless unit’s indoor head. As would be the case for most installs, both of these homes had bedrooms
that were typically closed off to the location with the heat pump head and were primarily heated by the
supplemental baseboard.

The equipment that was selected for installation is described inTable 3. These systems were selected
because the manufacturers are well established with large shares of the residential HVAC market and
the most local contractors familiar with the systems. All systems meet the inverter driven requirements
of ccASHPs and have heating ratings (HSPFs) in the highest levels available (at least 8.5 HSPF for all
systems).

Table 3. ASHP equipment installed for the field characterization

Site ASHP System ASHP Size ASHP Backup
Number Type

1 Carrier Infinity with Greenspeed 4 ton Ducted LP Cond. Furnace
[25VNAO048A003]

2 Bryant Extreme Heat Pump 4 ton Ducted LP Cond. Furnace
[280ANV048]

3 Carrier Infinity with Greenspeed 3 ton Ducted LP 80% Furnace
[25VNAO36A003]

4 Trane XV20i 3ton Ducted LP Cond. Furnace
[ATWVO0036A]

6 Mitsibishi Ductless Hyper Heat 1.5 ton Ductless Electric
[MUZ-FH18NAH] Resistance

8 Mitsibishi Ductless Hyper Heat 1ton Ductless Electric
[MSZ-FH12NA] Resistance

Sizing

Cold-climate air source heat pumps were sized for each home’s heating load (as opposed to the cooling
load), which typically led to an increase in capacity (or “tonnage”) of the system by one ton. This meant
that where a home sized for cooling would install a two-ton heat pump, the same home sized for
ccASHP heating would install a three-ton system. In cold climates, sizing the heat pump for a home’'s
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heating load is important in order to take full advantage of the system’s variable capacity, thus
minimizing the use of backup heating. Figure 8 shows the equipment output for a two-ton, three-town,
and four-ton ccASHP, all of which have a furnace for backup, charted against the outdoor air
temperature. The house heating load must be calculated in order to properly size the heat pump.
Comparing the house heating load curve to the equipment capacity curve shows the crossover
temperature where the heat pump capacity matched the house heating load. Figure 8 shows the
comparison of a TRANE ccASHP and a home with a 38,000 btu/hr heating load at -11°F outdoor air
temperature. The outdoor air temperature at which the heat pump capacity matched the house load is
at 5°F for the four-ton, 14°F for the three-ton, and 27°F for the two-ton unit. These temperatures
indicate that point at which the heat pump can no longer meet the load of the home independently and
back up is required. If the two-ton heat pump were to have been chosen for this home, the furnace
would have to take over heating the home at 27°F, significantly limiting the fraction of the heating load
met by the ccASHP. The three-ton and four-ton switchover points are lower, allowing the system to take
advantage of the variable capacity to provide heat to the home at low temperatures. Sizing the system
for the heating load resulted in a heat pump that was one ton larger than sizing for cooling. However,
this is not a concern because the variable capacity of the system will allow the heat pump to match the
cooling load required, by firing at a lower rate.

Figure 8. Heating sizing chart for an ccASHP system
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The temperature at which the heat pump no longer meets the full heating load of the home and
requires back up heat, or the changeover point, determines the fraction of the heating load the ccASHP
will deliver. Figure 9 shows that fraction of heating load met by the ccASHP for a range of change pover
points for four Minnesota cities. The figure shows that in colder locations, such as Duluth, a switch over
point of 10 °F would allow the heat pump to meet 71% of the space heating load. In the slightly warmer
climate zone, such as Minneapolis, a 10°F change over point will meet 81% of the heating load.
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Figure 9. Fraction of the heating load by set point for several MN locations
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Controls allow the installer to program a switchover set point that locks out the ccASHP. For this study,
the change over point that resulted in meeting approximately 80% of the heating load was targeted..
Based on how the systems were sized for each home, a 10°F chang over was slightly warmer metro and
southern MN sites and a 5 °F temperature was selected for colder homes application. In Minnesota, it is
common practice for installers to set this point around 25°F to 35°F for ASHPs that are not designed for
cold-climate heating. This is done to prevent the ASHP from operating at cold outdoor temperatures
where the capacity, efficiency, and delivered air temperatures are unfavorable. In addition to being the
coldest point where the ASHP could meet the full load, the 10°F set point was a conservative midpoint
between the coldest theoretical operating temperature of the system and a point the installers’ were
comfortable with. Setting the switchover point to a higher value would have locked out the heat pump
at a point where it still had the capability to meet the heating load of the house, preventing the
homeowner from taking full advantage of the system benefits.

Integrating ccASHPs with backup heating systems

The original intent of this project was to integrate ccASHPs with the existing heat source as backup.
However, there are issues that make integrating a ducted ccASHP with the existing furnace complicated.
The two primary issues are 1) the furnace and heat pump require communicating capabilities and 2) a
multi-stage fan is necessary to achieve the full benefit of the ccASHP. To deal with these issues,
manufacturers and installers specify that the furnace and ccASHP must be the same brand. This ensures
that the controls for the ccASHP and the furnace can communicate. Integrated controls are required for
the switchover set point and the furnace fan speed. With the variable capacity capabilities of ccASHPs,
manufacturers require that the fan in the air handler unit also be variable speed for ideal performance
of the system. Unfortunately, most 80% AFUE and older condensing furnaces have single stage fans.
While it is expected that a wider range of options will become available, at the present time only
recently installed and higher end furnaces would have the controls and fan characteristics desired for
integration.
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Solutions to the integration issues include 1) install a new communicating condensing furnace; 2) install
a new 80% AFUE communicating furnace with a multi-stage fan; 3) retrofit the existing fan and furnace
controls; or 4) install a plenum electric resistance heater. Option 3 was eliminated, as it is complicated
and not practical for integration into an energy efficiency program. Option 4 was also eliminated since
eliminating the need for a furnace would require a plenum heater to meet the full heating load of the
home. In large homes this would require a very large plenum heater and an air handler to eliminate the
furnace. Options 1 and 2 were both selected as viable solutions that could be easily implemented by
installers and used in a utility rebate program. While the HVAC installers working on this study preferred
option 1, it is a much more expensive options. In the Minneapolis/St, Paul metro area, a homeowner
would pay about $4,250 for a condensing furnace and only $1,875 for the same size non-condensing
furnace. With a properly sized ccASHP, it is expected that the furnace would have to meet less than 30%
of the heating load, and this percentage can be reduced further for homes with lower heating loads.
Given that the furnace would only be running for a small portion of the heating season, it is likely to be
more cost effective to install an 80% AFUE furnace. An 80% AFUE unit was installed at site 3 where the
proper vent was available.

Electric resistance baseboard heating can also be an effective method of providing back-up heating.
Electric resistance systems are primarily used as back up for ductless heat pump systems, but can also
be used with fully ducted ccASHPs. Typical back-up applications of electric resistance baseboards are
used with their own independent controls (thermostat). The integration between the primary and back-
up systems are done through the thermostat set points. For example, the primary thermostat is set to
the desired room temperature and the back-up system is set a couple degrees cooler. When the primary
system is not able to meet the demand the temperature in the space drops and the back-up thermostat
will call for heat.

Monitoring equipment

Each home was fully instrumented with a residential HVAC data acquisition system that was developed
by CEE and successfully used on other field test projects. The system utilizes a Campbell Scientific
acquisition system customized to collect HVAC data. The data collection interval was adjusted for high-
resolution (one second) data when systems are active and lower resolution data when systems are
inactive. This logging interval strategy allows for the efficient use of short-term storage on the data
logger with daily transmission by cellular modem or internet connection each night. Table 4 details the
data collection system used at each site.
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Table 4. Instrumentation

Number Measurement Instrument Location

1 Power measurement Current transformer Outdoor unit

2 Power measurement Current transformer Indoor unit

3 Power measurement Current transformer Indoor Fan

4 Status (on/off) Relay Reversing valve

5 Air temperature Thermocouple array Supply air outlet

6 Air temperature Thermocouple array Return air inlet

7 Air temperature Thermocouple Mechanical ambient

8 Air temperature Thermocouple Conditioned space

9 Ducted: Gas use Ducted: Gas meter Ducted: Furnace
Ductless: Electric power Ductless: Power meter Ductless: ER circuits

10 Airflow Current transformer? Air handler fan

11 Weather data NOAA weather station Nearby

12 Air temperature thermocouple Outdoors

Note 1: Air handler fan amperage was measured during the field test. This value was related to
airflow through on-site testing at least two site visits. Airflow was measured with Trueflow plate for
ducted systems and a Ductblaster for ductless systems. See Appendix A for a full test methodology.
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Figure 10. Instrumateation diagram for a ducted ccASHP
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Data Collection

The data was transmitted to CEE servers and then processed and validated. This involved three steps: 1)
integrating the data with external weather data, 2) filtering the data for repeated or omitted data, and
3) range checking the data.

In addition to the outdoor air temperature data collected at the field site, CEE integrated weather
station data from the nearest available source in the analysis. Hourly weather station data was used,
and the data was interpolated for high-resolution analysis and aggregated for a longer time period
analysis. Outdoor dry bulb temperature was the primary measurement used.

The data timestamps were checked to ensure that data had not been repeated and/or omitted.
Automated range checking was performed, and a warning was output when values outside of a specified
range were detected. Aggregate data was also compared over time to ensure accuracy. For example, the
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daily electric use of the outdoor unit was compared day by day, and if the daily values were outside of
the expected daily variance they were tagged for further analysis. This process allowed for quick and
regular data validation and was used to indicate data acquisition system errors. Although errors were
rare, it was important to identify and correct them quickly to avoid data loss.

With the exception of airflow, measurements were made directly by the data collection system. The
system airflow was determined through measurements of the supply fan current draw and calibrated to
short-term measurements at each site. For ducted systems, short-term airflow measurements were
made using a TrueFlow for each mode of system operation. System airflow measurements were made
following the standard TrueFlow procedure for measuring at the furnace filter slot (The Energy
Conservatory 2005). The continuously monitored current measurements were then correlated to short-
term airflow measurements, which allowed the fan measurements to be used as a stand in for airflow
throughout the monitoring period. For ductless systems, a powered flow hood was used to make airflow
measurements in each mode of operation. These measurements were made following the methodology
used by (Christensen et al. 2011), which is explained in detail in Appendix A. Then using the same
process that was used for ducted systems, these short-term airflow measurements were calibrated to
continuous indoor fan current draws. With that calibration, the fan current draw measurements were
used to determine the continuous airflow of the system.

These short-term airflow measurements were made at the start and conclusion of the heating season,
and were used to create the fan power and airflow correlation and to verify measurement accuracy. A
series of temperature traverses were used to ensure an accurate mixed supply. Return temperature was
measured in all modes of operation, and the steady-state energy output and energy input
measurements for both the ASHP and the propane furnace were compared to expected values for each
system.

Analysis

Annual Energy Use

The annual energy use analysis was based on creating a heating load model and a system performance
model for each site. These models were used with typical medological data to determine normalized
annual performance. This approach has been used for many CEE research projects in the past, including
field evaluations of tankless water heaters, combined space and water heating systems, and other HVAC
technologies.
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The first step was to create a heating load model for each home. These models characterized the
ammount of energy the heating system must deliver to keep the home comfortable at vairous outdoor
air temperatures. The measured data were used to calculate the delivered heating capacity (load or
output).

Qout = CICFM(TSupply - TReturn) (1)

Where Qo is the delivered heating capactiy in Btu/hr that is calculated from the measured system air
flow, CFM, and the difference between the supply, Tsupply, and return, Tgeturn, thermocouple arraies. C;
was a conversion factor (~1.08 for typical air properties) that included the temperature depenedent
characteristics, density and specifc heat of air, and unit conversions.

The delivered heating capacity was calculated on a daily bases with the daily average outdoor air
temperature. This data was fit to a linear regression model to characterize the homes heating load.
Figure 11 shows that heating load characterization on Site_01_ducted. For wach site, the house heating
load model was used to calculate the deisgn heating load (the required energy necessary at the design
heating temperature) and the balace point temperature (the outdoor temperature at which heat was no
longer required). For Site_01_ducted the design heating load was 35,468 Btu/hr at -11 °F, the design
temperature for the metro area. The balance point was 64.5 °F.

Figure 11. Heating load characterized by outdoor air temperature for daily data from Site_01_ducted
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A system performance model was also developed from the field data. Energy consumption data was
measured directly. For ducted systems both the electricity from the indoor and outdoor units and the
back-up propane use from the furnace were measured. For the ductless systems, electricity was
measured from the indoor and outdoor heat pump units, and also from the back-up electric resistance
baseboards. The energy usage data was compared to the outdoor air temperature to develop the
energy use models.

Figure 12 shows the system performance model for the ducted systems at site_02. The model was
created by averaging the energy use for each 5°F outdoor air bin. Table 5 shows the binned results for
site_02. Averages were taken for both the propane use (purple in Figure 12) and indoor and outdoor
unit electricity use (total electricity use shown in orange in Figure 12) per day during ccASHP operation.
Additionally, the alternating mode methodology of the test allowed for data collection of furnace only
operation (black in Figure 12), which was used as a baseline. As outdoor air temperatures approached
the balance point (typically between 55°F and 65°F) heating energy use approached zero for all modes
of operation. In moderate temperature conditions during ccASHP mode, the electricity use from the
heat pump was larger than the propane use from the backup furnace. As outdoor air temperature
approached the changeover point (10°F), propane usage increased. This analysis was conducted on the
energy consumption data. The difference in efficiency between the heat pump (with COPs greater than
1.5) and the backup systems (with efficiency around 80%) mean that electricity delivered a
proportionally larger amount of energy to the home compared to the equivalent Btus of propane. For
example, on a shoulder season day where propane accounted for about 25% of energy consumption
(measured in Btus), the respective energy delivered from propane would be around 10% of the total
energy delivered.

Figure 12. Energy use for ccASHP and baseline propane furnace at Site_02_ducted
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When temperatures were below zero the backup propane use from the ccASHP was similar to the
propane use in the baseline only mode. Air temperature bins below the ccASHP system change point
had some heat pump operation due to the range of daily temperatures. For example, a day when the
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average air temperature of 0°F appears to prohibit heat pump operation because it is below the ccASHP
change point of 10°F, the maximum temperature of that day may have been above the change point,
allowing the heat pump to meet part of the daily load.

Table 5. Binned analysis for site_02_ducted

Energy

Delivered to Electricity Use  Electricity Use Avg.
OAT Bin Avg. Home Propane Use Outdoor Unit Indoor Unit System
OAT . Btu/hr

(Heating Load) Btu/hr Btu/hr cop

Btu/hr
-10to -5 -6.0 27,240 36,382 NA 4.4 0.7
-5to0 -0.9 21,627 28,513 0.4 4.2 0.7
Oto5 2.6 21,858 26,234 6.8 4.4 0.8
5to 10 8.2 19,245 17,538 21.8 4.2 0.9
10to 15 13.2 19,160 9,794 43.4 4.5 1.2
15to 20 17.6 18,606 6,265 50.0 4.4 1.3
20to 25 22.6 15,489 2,301 46.9 4.0 1.6
25to0 30 27.8 14,401 1,711 41.5 4.0 1.8
30to 35 32.8 12,173 879 33.1 3.3 2.0
35to 40 37.4 9,966 520 25.7 3.2 2.2
40 to 45 42.9 7,710 220 19.5 3.5 2.2
45 to 50 47.6 5,322 60 12.1 3.7 2.3
50 to 55 52.5 2,311 NA 4.5 34 2.1

The average measured field data per OAT bin (diamond shapes in Figure 12) were used to calculate the
average system performance at any outdoor air temperature through interpolation. The interpolated
energy use calculations were used to determine the annual energy use based on the typical
meteorological weather data (TMY3) from the nearest available site. The first step was to calculate the
number of days in each OAT bin based on the daily average TMY3 OAT. Next, the daily average TMY3
OAT per bin was calculated. Then, the electricity used by both the indoor and outdoor units, as well as
the propane used by the backup system, was calculated from the daily average TMY3 OAT and an
interpolation of the measured field data. Finally, the consumption data was totaled for the correct
number of days per bin to determine the annual heating energy used by the ccASHP system. This
process was repeated using the propane only baseline system to determine baseline operation.

Coefficient of Performance (COP)

The data collection methodology employed at each site allowed for several additional analyses beyond
the annual energy use methodology described previously. One additional analysis that was performed
was a calculation of the coefficient of performance (COP) and/or system efficiencies. Both system
efficiency and COP are a measurement of the ratio of the energy output (or energy delivered) to the
energy input (or energy consumption). For energy transferring devices, like a heat pump, the ratio is
called a COP. For energy conversion devices, such as a furnace with a propane burner, the ratio is called
efficiency. For energy conversion, the output can only be a portion of the input and the efficiency must
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be less than 100% by the laws of thermodynamics. For an energy transfer system, the energy output is
the energy extracted from the source, such as outdoor air for an ASHP, and it can exceed the input
without breaking the laws of thermodynamics. Therefor COPs can be higher than 100%.

Both the energy output and the energy inputs of the heat pump and backup propane system were
measured directly. This allowed calculation of the COP or efficiency of the systems. COPs or efficiencies
were calculated for various intervals, including instantaneous, one second, daily, and seasonal.

Cycle based analysis

In addition to measuring energy input and energy output, the data collection systems measured many
other system parameters at each site. These parameters included delivered air temperature, return air
temperature, airflow rate, component runtimes, ambient temperatures, and temperatures inside the
outdoor unit of the heat pump. All of these parameters were used for additional calculations.

Cyclical performance was determined for each system. The runtime of three components was used to
determine the heating cycle start and stop times. The runtimes of the indoor unit fan, the outdoor unit,
and the propane furnace were used to determine the start and stop of each heating cycle and the mode
(i.e. heat pump heating, backup heating, defrost, fan only, or cooling) that was active. Data from each
cycle was used to diagnose and characterize system performance.

Other system impacts

Detailed, high-resolution field data was also used to perform several other calculations and
characterizations discussed in the results section. For example, data on when the system was in defrost
mode was collected for each system. From this data the impact of defrost was calculated, including the
reduction in system COP due to locking out the heat pump and the penalty from using the furnace to
defrost the outdoor unit.
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Heating loads

The direct measurement of supply and return air temperatures and calculated airflow rates allowed for
the calculation of the heating energy delivered to each home. The model of heating energy and outdoor
air temperature was discussed previously in this report. Figure 13 shows the relationship between
delivered heating load from each system and the outdoor air temperature for each site.

Figure 13. Heating load models for each site

300001

200001

®
I\JI_\

[ONONOGNG
[

Household Heating Load (Btu/hr)
0 M Oil

10000

. -~

0 25 50 75
Qutdoor Air Temperature (F)

For the ducted systems (s_1,s_2,s 3, and S_4), the ccASHP delivered energy was the only source of
heating, meaning that the energy delivered by the heat pump was the full household heating load. For
the ductless systems (s_6 and s_8), there were additional heat sources, such as electric resistance
baseboards and fireplaces. For these homes, the delivered energy from the ductless systems was used
as the systems load, which would be a fraction of the total household load. The delivered load of the
ductless systems were limited by two factors, the capacity range of the ductless system and the heating
load the ductless system interacted with due to the installation location and control settings. . The
parameters of that regression were used to characterize each site’s heating load. Table 6 shows the
heating load parameters of each ducted ccASHP site based on the homes location (design heating
temperature) and house characteristics (balance point temperature and design heating load). The
design heating load of the ductless systems was not at the actual delivered capacity of these systems at
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design temperature; rather, it was a characterization number used to compare the size of the load to
the ducted central systems. The design load was calculated using the balance point temperature and the
annual heating load of each site, and calculating what the design load would have been if the system
followed the typical linear heating load shape of sites 1 through 4. Additionally, the table shows the
annual heating load for each site, as calculated from the load characteristics and the nearby typical
weather profiles (TMY3 data).

Table 6. Heating load characteristics of each field test site

Design Heating  Balance Point Design Annual
Site Temperature, Temperature, Heating Load, Heating Load,
°F °F Btu/hr Therms/year
S 01 -10.6 62.6 34,341 799
S 02 -8.8 60.9 28,339 652
S 03 -12.4 66.1 24,734 562
S 04 -18.2 64.5 24,306 664
S_06_ductless -17.2 70.1 11,950* 442
S_08_ductless -17.2 59.1 8,400* 244

* The design heating load of the ductless systems should be used as a comparison to the ducted systems
and was not the actually delivered capacity of these systems at design temperature.

Annual Energy Use

The system performance and annual energy use of each ccASHP and baseline system were analyzed
using the methodology previously described. The following section summarizes the energy use and
savings, reduction of reliance on delivered fuels, system COPs, and ability of the ccASHP to meet the
homes’ load.

The annual energy consumption for both the baseline (furnace only) and the ccASHP with backup
systems was determined with a binned analysis of the heating system energy consumption versus
outdoor air temperature. Figure 14 shows the site energy use, in propane and electricity, for each site
with the baseline (furnace or electric baseboard) and the ccASHP. Table 7 shows the relative reductions
in energy and cost at each site. Significant site energy reduction, between 37% and 54%, was measured
for all sites. The figure also illustrates the switch from a delivered fuel dominated heating system to a
primarily electricity-based system for the flex fuel sites. In baseline, furnace-only operation, 97% to 98%
of site energy use was from propane. The air handler fan operation was the only electricity use, and this
was a small fraction at 2% to 3%, of total site energy use. In the ducted ccASHP system operation,
between 48% and 69% of site energy use was electricity. While the air handler fan (the indoor unit)
accounted for the same fraction of energy use, the addition of the outdoor unit (the heat pump)
accounted for almost half the total site energy use. For the ductless systems, it was assumed that the
load met by the heat pump system would have been meet by an electric resistance heater in the
baseline case. These systems saw a 53% reduction in electrical use with the ductless system. Along with
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these energy savings, there are substantial cost savings for the homeowner. There was an average cost
savings of 33% for ducted ccASHPs and 53% for ductless. Ducted systems saved between $377 and $764
per year and ductless systems saved $369 and $610.

Figure 14. Propane and electricity use for each the ccASHP and baseline heating system at each site
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Table 7. Savings from ccASHPs over baseline furnace at each site

Site DeI:ieitll.r:i d Site Energy Cost Propane Savings,

Btf/hour ’  Reduction Reduction Reduction $/year
S_1 ducted 34341 37% 28% 56% $469
S_2_ducted 28 339 47% 34% 73% $524
S_3_ducted 34 49% 40% 67% $764
S_4_ducted 24 306 50% 31% 60% $377
S_6_ductless 11.950* 52% 52% NA $610
S_8 ductless 8.400* 54% 54% NA $349
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Propane Reduction

On average there was a 64% reduction in propane use for the ccASHP systems with propane furnace
backups. These sites saw their annual consumption reduced from an average of 967 gallons per year to
346 gallons when using the ccASHP. All four sites used less than 500 gallons of propane per year. A
typical residential home has a 500-gallon storage tank; therefore all the homes monitored would be able
to avoid costly heating season propane deliveries, and most homes in the metro, central, and southern
regions of the state would avoid mid-heating season refills with 500 gallons of storage. In the northern
regions, propane use with ASHPs would still be greater than 500 gallons for homes with design heating
loads greater than 25,000 Btu/hr.

ccASHP Performance

The large reductions in site energy consumption were possible because of the significant COP increase
with the ccASHP systems compared to baseline systems. Heating events where only the heat pump was
used typically had COPs around 1.3 at the lower temperature change point (10°F), and COPs increased
to around 3.0 to 4.5 in the shoulder heating seasons (around 50°F to 60°F).

Figure 15. Heat pump only cycle COPs by outdoor air temperature bin
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While the outdoor air temperature has the largest impact on the COP, as Figure 15 shows, heating cycles
at the same OAT did have a range of COPs. Secondary factors on cycle COP include the levels of
modulation of components in both the indoor and outdoor units. The largest impacts are the
modulation of the heat pump outdoor unit (i.e. the compressor) and the flow rate of the indoor
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circulation fan. For example, Site 4 showed much higher COPs (~4.0) in the shoulder seasons than the
other three ducted systems (~3.0). This was due in part to higher performance equipment at these
conditions, and also in part because Site 4 reduced the modulation and capacity to increase the amount
of heat transfer. The weather-normalized, annual ccASHP-only (no backup fuel use included) COPs were
2.75, 2.78, and 2.51 for Sites 1 through 3 respectively.

Figure 16. Coefficient of performance for each heating cycle at each central ducted site
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Figure 16 shows the performance of each ducted system by heating mode. This figure shows the
individual cycle data represented in Figure 15 as well as the efficiency of the furnace-only cycles. These
events were typically between 70% and 85%, or 8 to 15 percentage points below the rated AFUEs for the
condensing units. The non-condensing furnace was typically firing around 57%, 13 percentage points
below the rated efficiency. These efficiencies were below the rated efficiencies due at least partially to
the cycle length. Figure 17 shows the instantaneous and cumulative event efficiency for a typical furnace
event with a condensing furnace. This event took 14 minutes for the instantaneous efficiency to reach
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the condensing level (>90%), and it didn’t reach steady-state operation for an additional six minutes.
Looking at the cumulative efficiency of this event, the 25-minute draw concluded before these transient
state-up effects were made insignificant. These impacts contribute to the annual efficiency in the
baseline mode as well as the efficiency of the backup propane system for ccASHPs. Note that it is very
common for installed efficiencies to be lower than the rated performance. This is because ratings are
conducted at a specific set of operating conditions, which are often not directly recreated in the field.
Additionally, the method of tests for HVAC equipment, including AFUE and HSPF, are intended to
compare unit performance, and they are not intended to represent the installed efficiency of any
specific installation.

Figure 17. Furnace efficiency
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Figure 18 shows the overall of the performance of the ccASHP at each site, including system COPs for
both ducted (S1, S2, S3, and S4) and ductless sites (S6 and S8). As the temperature increases from design
temperatures well below 0 °F to shoulder season temperature, the COPs increase from 0.6/0.8 to
3.0/4.0 for the ducted systems and from 1.0/1.5 to 4.0/4.5 for the ductless systems. Below 0 °F, the
ducted systems were operating at efficiencies comparable to the furnace-only performance (see Figure
16). This was because these systems were run with an outdoor temperature lockout at 10°F so that
below that temperature only the furnace would run. The ductless systems had higher efficiencies below
0°F because the heat pump could run down to -13 OAT. Therefore, at OAT between 0°F and -13°F, Site 6
had an average daily COP of 1.7 and Site 8 had an average COP of 1.3. One of these ductless units
operated evenly with COPs greater than 1.0 when the local outdoor temperature was -19 °F.

At outdoor temperatures at the warm end of the shoulder seasons some system COPs begin to
decrease. These decreases were due to cooling operation, where the supply temperature was lower
than the return temperature and the output of the system decreased the overall heat delivered.
Because this project focused on the heating performance of the systems, the cooling events were
typically ignored.
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Figure 18. Daily ccASHP system performance.
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Note: Ducted installations include heat pump and furnace performance and ductless systems include the heat pump only.

Expected Savings across Minnesota

The data collected at each site in the study was used to create performance maps for ccASHP systems.
These performance maps were then used to look at the changes in annual COP, energy use, savings, and
reduction of delivered fuels, had the ccASHPs been installed in a different location or in a home with
different load. This sensitivity analysis was also used as the bases for the calculation spreadsheet
described in Appendix B.

Figure 19 shows the performance map for the average of the four ducted ccASHP systems. It was
created through an average of the binned daily data shown in Figure 18. The energy usage in both
propane and electricity was characterized as a fraction of the output to allow the model to scale with
the size of the home. This performance model requires that the ducted heat pump meet the sizing
criteria that this project used for its installations. The heat pump must also be able to meet the full load
of the home at 10°F. The ccASHP performance model was used to look at the impact on annual energy
use, savings, and system COP due to changes in house heating loads and locations in Minnesota.
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Figure 19. The average performance map for the ducted ccASHPs characterized in the project
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Three heating loads were defined to assess the impact of the house load on the ccASHP performance.
The largest load represents either large or an especially leaky Minnesota home. The heating load was
defined as the largest-sized home where a four-ton heat pump could be installed and still meet the
proper sizing. Using this sizing criteria and the systems data for the ccASHP installed at Site 4, the largest
load a four-ton heat pump can meet at 10 °F outdoor temperature is 28,507 Btu/hr. That home
translates to a metro area design load (at -10.6 °F outdoor air design condition) of 40,252 Btu/hr.

The median home was developed to represent a typical Minnesota heating load. Based on data
compiled from several resources (including the RECS, the U.S. Census, Minnesota utility rebate
calculations, the Minnesota Technical Resource Manual calculations, and others), the average
Minnesota home uses about 750 therms per year for heating. Assuming an average space heating
efficiency of 80%, that is around 600 therms per year of heating load per home. With a typical balance
point of 60°F, the typical home would have a design load of 26,510 Btu/hr, with a design heating
condition of -11 °F). This home was used as the median house. The U.S. passive house institute (PHIUS
2015) requires that the heating load of a passive house in Minnesota is below 7.6 kBtu/hr square feet of
conditioned space. This requirement was used to generate the smallest heating load with a metro area
design load of 4,325 Btu/hr at -10.6°F.

The impact of a home’s location was also analyzed. The ccASHP performance map was used to estimate
the performance of the leaky/large, median, and small homes in four different Minnesota cities: Duluth,
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St. Cloud, Minneapolis/St. Paul, and Albert Lea. These cities were selected to represent the north, west,
metro, and southern areas of Minnesota. Figure 20 shows the impact of changing locations. In northern
areas, such as Duluth, the colder temperatures increase heating energy use because of the larger loads,
and also because homes modeled there experience longer periods of time when it was too cold for the
heat pump to operate. The heat pump lockout forces a higher fraction of the load be met by the back-up
system, thus increasing the energy use.

Figure 20. Annual Energy Use for three house types in four different Minnesota cities
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The annual system COP for these homes ranges from 1.09 to 1.33, depending on location. The heat
pumps have an annual COP of between 1.9 and 2.1. The lower ASHP-only COPs are due to the lower
temperatures while the heat pump is operating. The lower system COPs reflect impacts from the lower-
ASHP COP and the longer periods of temperature below the heat pump lockout. Table 8 shows these
effects for the 12 sample cases. St. Cloud had lower system COPs than Duluth, despite Duluth being a
more northern city. St. Cloud only had 262 days below the heating balance point compared to 283 in
Duluth. However, the average heating temperature in St. Cloud of 30.1°F was actually lower than Duluth
average temperature of 31.6°F, which was likely the cause of a slightly lower COP.

The changes in operating performance and use resulting from location have a much smaller total impact
on cost and energy savings that house type. The median house in southern Minnesota has an annual
operation cost of $823 while the same house in northern Minnesota is $1,175.
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Table 8. Impact of location and house load on system COP, energy use, and operating cost

Space ccASHP Savings Savings
Heating  Site Energy Annual over Cond over 80%
Load, Use, System Operating Furnace, Furnace,
House Type Location therms/yr therms/yr cop Cost, $/yr S/yr S/yr
Passive Duluth 108.0 95.4 1.13 $192 $50 $111
Median Duluth 662.0 584.9 1.13 $1,175 $308 $680
Leaky/Large @ Duluth 1005.1 888.1 1.13 $1,784 $467 $1,033
Passive MSP 95.0 76.6 1.24 $158 $54 $107
Median MSP 582.2 469.5 1.24 $971 $329 $654
Leaky/Large = MSP 884.0 712.8 1.24 $1,475 $500 $992
Passive St Cloud 101.9 93.8 1.09 $186 $42 $100
Median St Cloud 624.9 574.7 1.09 $1,141 $259 $612
Leaky/Large St Cloud 948.8 872.6 1.09 $1,733 $394 $928
Passive Albert Lea 85.1 63.8 1.33 $134 $56 $103
Median Albert Lea 521.4 391.0 1.33 $823 $342 $633
Leaky/Large = Albert Lea 791.7 593.6 1.33 $1,250 $519 $962

Installation Costs and System Paybacks

The costs of installing the four ducted systems for this project may not be representative of typical
installation costs for a couple of reasons. First, as part of the installations, contractors were required to

install instrumentation packages, and two power transducers and a propane flow meter were installed
by the contractor at each site. While the actual number varied with the contractor, it added some cost
to the bid and labor at all sites. Second, it is likely there was an additional “risk” cost added into these
installations because the contractors were unfamiliar with cold-climate operation, and the set up and

change point temperatures were outside of their comfort zone. Additionally, each contractor knew they

were participating in a research project, and there was likely additional set up, field visits, and other

costs associated with the research. All of these potential costs likely increased the overall installation
cost. Table 9 shows the installation costs that were a part of this project. Removing the estimated cost
for instrumentation, the average project cost for instrumentation was $12,625 for a new ccASHP and a
new propane furnace for backup. For the reasons listed above, and included in the table notes below,

these costs may not be representative of actual costs of a typical installation. They are included here as

a reference point, but the installation costs used for analysis were taken from a national database

(National Renewable Energy Laboratory 2014) and discussed below.

Cold Climate Air Source Heat Pumps
Center for Energy and Environment

40



Table 9. Installation sots for installs conducted as part of this project

Site Location size furn Total
S 1 ducted Farmington 4 ton 96% $11,149
S_2 ducted Hastings 4 ton 98% $15,864!
S_3_ducted Kenyon 3 ton 80% $15,970
S 4 ducted Pelican Rapids 3 ton 96% $13,520°
S_6_ductless Lutsen NA $4,5003
S_8 ductless Superior, WI 1.5 ton NA NA3

1. A about one third of the total cost (or $5,981) was for the condensing LP furnace

2. This contractor charge $1,763 for the electrical instrumentation. This was added cost for the research
aspect of the project and does not count at added time and cost for the propane meter.

3. This is the installation costs only. The equipment was donated by the manufacturer.

4. This system was installed prior to CEE’s involvement in with the site. It fit within the site selection criteria
and the project team was able to install full instrumentation on the system.

The National Residential Efficiency Laboratory (NREL) developed a database to provide a national
database of residential building measures and their associated costs. The data was not intended for
specific cost estimates; it was used to, compare the relative cost effectiveness of different energy
efficiency options. Cost data was collected from four different sources: resources on construction cost
estimates; web-based quote estimate resources; NREL’s home performance industry partner and
distributors cost figures; and data from published reports (National Renewable Energy Laboratory 2014).
Table 10 shows the relevant database costs from this project.

Table 10. Cost estimates from the NREL National Residential Efficiency Measures Database

Measure Cost of Cost of Description
Baseline Efficiency
Option
Air Source Heat Pump | $2,994 $5,550 Base: 7.7 HSPF / 13 SEER,

Eff: 9.5 HSPF /19 SEER

Air Conditioning $3,164  $5,180 Base: 13 SEER,
Eff: 19 SEER
Propane Furnace $2,060  $3,900 Base: 80% AFUE,

Eff: 96% AFUE

According to NREL database, the average ccASHP (9.5 HSPF/ 19 SEER) with propane furnace back-up
(AFUE 96%) costs $9,450 installed. Assuming an 18 year life expectancy (ASHRAE 2017) and the median
cost savings from the metro area for this project ($329 compared to a condensing furnace) has about a
$6,000 life time savings for a condensing furnace that is a savings to investment ratio of 0.63. Or
$11,800 lifetime savings compared to an 82% AFUE furnace ($654/year) for a savings to investment ratio
of 1.24. This ratio shows that the ccASHP will pay for itself over the lifetime of the equipment compared
to a baseline furnace system. Additionally, in retrofit applications, the necessary replacement at the
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time of HVAC failure is a good opportunity to upgrade. Table 11 shows the simple paybacks for ccASHP
at the time of replacement for an existing forced air system. Heat pumps have installed costs very
similar to that of traditional split system air conditions with the same SEER value. If both the furnace and
air conditioner at a site need replacement, the ccASHP systems have a simple payback of less than one
year.

Table 11. Simple backup for ccASHP with a furnace backup

Initial Incremental Simple Payback  Simple Payback
Cost Cost vs Cond. Furnace, vs 82% Furnace,
years years
$9,450 | $9,450 28.8 14.5
No Failure
$9,450  $4,270 13.0 6.5
At A/C failure
$9,450 | $5,550 16.9 8.5
At furnace failure
$9,450 | $370 1.1 0.6

At furnace and A/C
Failure

ccASHP Capacity

The capacity of each ducted ccASHP was compared to the heating load of the home. In general, the
ccASHP ran at low capacity for long periods. Figure 21 shows the capacity of each ccASHP heating event
compared to the daily heat load requirements of each site. Above 302F the ccASHPs typically operated
in heat pump only mode at capacities greater that the heating load. Below the change point of 10 °F the
backup system (Propane heating only) was used to meet the load. Between these temperature 30°F and
10°F the heat pump only events started to drop below the heating load of the home. In this
temperature range there were also a large number of defrost events. These defrost cycles are any
heating cycle where the defrost system was active. This includes events where the heat pump range for
a period of time prior to the defrost event. Figure 21 shows that when OATs conditions were such that
defrost was needed (10°F to 30°F) the heat pumps were running at higher capacity, but were also likely
to require defrost operation for part of the heating event.
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Figure 21. Heating capacity for each heating event compared the daily heating load of the home
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Figure 22 shows heat pump runtime as a percentage of the total heating system run time. There were
two reasons for the backup system to operate instead of the ccASHP. The first was if the temperature
dropped below the change-over point of 102F. The second was if for some reason the controls of the
heating system preferred the backup over the ccASHP due to limited capacity, defrost, or some other
reason. All six ccASHP rarely fired at maximum capacity, this was at least in part due to the heating loads
of the homes being smaller than the load calculated from sizing. For example, the system installed using
the heat pump specs in Figure 8 was sized based on a calculated design heating load of 35,500 Btu/hr (at
-18°F), but the analysis showed the actual heating load was only 24,306 at that condition. That was a
31% reduction in the necessary load, which meant that the system never needed to operate a maximum
capacity. During the instrumentation verification the maximum capacities of the ccASHP were analyzed
for each ccASHP. At each site the maximum capacity (determined by forcing high fire) was much greater
that the highest capacities shown in typical heat pump only operation (Figure 21). The 4 Ton systems at
Sites 1 and 2 fired at 55,000/hr Btu and 49,000 Btu/hr. The 3 Ton system at Site 3 delivered 38,000
Btu/hr during testing. Improved controls to prioritize ccASHP high capacity operation over backup
heating would further increase the savings and reduction of delivered fuels. Additionally, lowering the
switchover temperature for locking out the ccASHP could increase ccASHP usage.

Figure 23. Heat pump delivered heating capacity compared to homes heating load for site_2_ducted
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Comparing the heat pump’s delivered capacity to the site’s heating load was one way of looking at the
ability of the heat pump to meet the load. Figure 23 shows this comparison for Site 2. When outdoor air
temperatures were between 5°F and 10°F the heat pump delivered a median capacity of 19 kBtu/hr,
with half of the cycles between 14kBtu/hr and 20 kBtu/hr and the system delivering capacity up to 25
kBtu/hr. At 10°F the homes’ heating load was 20.7 kBtu/hr. The heat pump had more capacity than
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necessary to heat the home at the changeover set point. The data was aggregated from the measured
data in the field and should not be taken as an indication of the maximum capacity. Each system was
able to meet the homes load at 10°F, matching the design and sizing selections discussed in the
installation section of this report. That is, the heat pump equipment performed as designed.

Figure 24 shows the same delivered capacity analysis for a ductless heat pump. It was difficult to
determine the heating load of the ductless systems as the amount of electric resistance the system
could offset was largely dependent on the installation. Because of this the comparison to the heating
load was not conducted. As Figure 24 shows there was heating delivered by the heat pump, at Site 8,
under very cold outdoor conditions, even below the systems rated range. While COP was lower in these
conditions, the performance was still better than the electric resistance alternative. This unit had a
capacity range up to 21,000 Btu/hr in moderate temperature conditions. At 5 °F the maximum capacity
was 13,600 Btu/hr. Figure 24 shows between 0°F and 5°F the 1 ton ccASHP had a median capacity of
6,188 Btu/hr and a maximum capacity of 15,675 Btu/hr. Assuming that the heat pump was installed with
proper sizing it was meeting the desired heating load. Additionally, the figure shows that the heat pump
was still operational and delivering heat below the -13 °F minimum outdoor air temperature. This unit
had an average output capacity of 3,735 btu/hr below -13 °F outdoor temps.

Figure 24. Cold weather capacity of a 1 ton ductless ccASHP at Site 8
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Defrost

The defrost performance of cold climate air source heat pumps had a large impact on the heating
performance of these system. Defrost is necessary to prevent frost build up in the outdoor unit. Frosting
may lead to reduced performance and increased wear on the outdoor unit. All of these systems
measured used air temperature measurements taken near the outdoor coil to determine when the
defrost cycle should be run. For the systems monitored this meant the defrost came on whenever there
was a potential for defrost which is much more conservative and consumes more energy than running
only when defrost has actually started to accumulate.

Figure 16 shows the different operating efficiencies and temperature ranges of each mode of operation.
In an ideal installation where defrost was not necessary the only back-up heating events would be the
furnace events (in green) that occur below the changeover point of 10°F. This figure shows the fact that
defrost cycles were creating back-up energy consumption between that change over point and 40 °F
outdoor conditions.

Further analysis is necessary to determine the opportunity for reducing defrost runtime. Defrost cannot
be completely eliminated, but there is room to reduce the operation. Any reduction in defrost runtime
will result in an annual reduction of back-up energy use, operational cost, and site energy consumption.
Table 12 shows the impact defrost operation has on the system’s COP. These reduced COPs have a
significant impact on the annual energy consumption at each site. On average the annual energy
reduction would be reduced by 8.3% if defrost was eliminated from the ducted ccASHP systems (sites 1,
2,3, and 4).

Table 12. Impact of defrost operation on COP at site 02

Outdoor Temperature Bins COP of ccASHP only COP of ccASHP with defrost

10°F to 20°F 1.86 1.65
20°F to 30°F 2.17 1.95
30°F to 40°F 2.44 2.31

Policy Analysis

Although there is currently no structure in place for achieving delivered fuel savings from ccASHPs for
electric and natural gas utilities under CIP, Minnesota’s policy commitment for energy efficiency goes
well beyond CIP policy. There are several other Minnesota state policies that could help promote
ccASHPs as a way for households using delivered fuels to save energy. For example, the Next Generation
Energy Act of 2007 (Helty and Solon 2007), in addition to creating utility savings goals under CIP, set

Cold Climate Air Source Heat Pumps
Center for Energy and Environment

46



goals to reduce the use of fossil fuels per capita in Minnesota and outlined the state’s interest in
“increased efficiency in energy consumption” (Sec. 216¢.05, subdiv. 1 and subdiv. 2) (Revisor of Statutes
2015). More recently, legislation enacted in 2015 commonly called the “Propane Bill” (HF 550) explicitly
opened the door to displacing the use of fuels such as propane with a utility fuel source (natural gas).
The “Propane Bill” defined an “energy improvement” as “the installation of infrastructure, machinery,
and appliances that will allow natural gas to be used as a heating fuel on the premises of a building that
was previously not connected to a source of natural gas” (Sec. 6, Subd. 5, (4)). This establishment of a
public policy to allow expansion of a utility fuel source (natural gas) to displace propane and heating oil
is analogous to allowing expansion of utility electric energy (via ccASHP equipment) to reduce reliance
on the use of propane and heating oil. However, while there are several established state policies in
Minnesota that support the concept of reducing the use of fossil fuels, such as propane and heating oil,
there is still no established infrastructure or funding source for achieving savings. For ccASHPs, there is
currently no way to recognize savings in the application of utility CIP savings goals.

There are areas in the CIP policy framework that could be amenable to recognizing delivered fuel savings
from ccASHPs, even though there is no specific structure currently in place. The CIP statute defines
“energy conservation” as “demand-side management of energy supplies resulting in a net reduction in
energy use” [216B.241, subdivision 1(d)]. This does not restrict energy conservation to only electricity
and natural gas. It goes on to define “energy conservation improvement” as “a project that results in
energy efficiency or energy conservation” [subdivision 1 (e), emphasis added]. Notably, the subsequent
language in the statute setting minimum CIP spending requirements and energy savings goals all use the
terminology “energy conservation improvement.” This could open the door to some flexibility beyond
direct electricity and natural gas savings. Additional components of the statue that would be supportive
of fossil fuel savings include the requirement for inclusion of participant and “societal” benefits in
determining cost-effectiveness [subdiv. 1c(f)], as well as the requirement for the Department of
Commerce Commissioner to report “estimated carbon dioxide reductions” achieved by CIP programs
[Subdiv. 1c(g)]. The DER has already allowed for a limited inclusion of savings from deliverable fossil
fuels for electric utilities under CIP, in the case of low-income customers. In that policy guidance, DER
included two particular rationales for allowing CIP to incorporate deliverable fuel savings: 1) an equity
concern for ratepayers paying for CIP programs with little opportunity to benefit, and 2) benefits to
customers and society from the “reduced consumption of fossil fuels (DER 2012).” These rationales
would also apply to a ccASHP program under CIP.

CIP does allow for substantial authority for the Department of Commerce Commissioner to modify a
utility’s CIP energy savings goals. The pertinent language reads as follows: “In its energy conservation
improvement plan filing, a utility or association may request the commissioner to adjust its annual
energy-savings percentage goal based on its historical conservation investment experience, customer
class makeup, load growth, a conservation potential study, or other factors the commissioner determines
warrants an adjustment.” [subdiv. 1c(d) emphasis added]. The statute does specify that a CIP plan must
include savings of at least 1% of a utility’s gross annual sales, and that these flexible elements would
only apply above that 1% savings level. The statute goes on to list electric utility infrastructure projects
and waste heat recovery as examples of types of additional projects that could be included under this
flexibility. In summary, the existing CIP statute contains numerous elements that suggest it might be
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possible, and consistent with overall state policy objectives, to include delivered fuel savings from
ccASHPs in a CIP program. Indeed, DER has already opened the door to that incorporation of delivered
fuel savings in certain low-income programs.

As in many states, the potential for utilities promoting fuel-switching within an energy efficiency
program has been a concern in Minnesota. The historical concerns focus on the possibility that a utility
might use its energy efficiency programs as a means to lure customers away from a utility providing a
different energy type, which could adversely affect the interests of the customers of the other utility (to
whom regulators have some responsibility). These concerns are focused on the issue of fuel switching
between electric and natural gas utilities (Docket No. GO08/CIP-00-864.07), entities for which the state
has specific regulatory responsibilities. An additional concern has been in regard to including cost-
benefit analysis to ensure a net decrease in fuel consumption. Neither of these concerns should be an
issue with a ccASHP program, as there is no second utility (i.e. on providing natural gas) involved and a
new program would incorporate a net-Btu analysis. No specific rulings were found regarding programs
that do not involve fuel switching between electric and natural gas utilities. Moreover, there is
considerable support for the concept of using a multi-fuel net Btu savings basis for judging whether a
project is desirable and cost-effective. Finally, as previously mentioned, Minnesota statute gives
considerable discretion to the Department of Commerce Commissioner to approve alternative
approaches in a utility CIP plan. The history of these issues in Minnesota suggests that it should be
possible to avoid having the ‘fuel switching’ concern be a roadblock to the use of ccASHPs in the type of
CIP program this study suggests.

Using the authority for flexibility provided in the CIP statute, a potential pilot program to promote
ccASHPs may be feasible. The proposed programs should contain the following elements:

1. The program should target existing homes that use electricity, propane, or heating oil as their
space heating fuel (not utility natural gas).

2. To help ensure that the program is genuinely focused on energy conservation, the program
should include incentives and assistance to facilitate building shell conservation improvements
(i.e., insulation and air sealing) in the homes that install ccASHPs.

3. Cost-effectiveness should be based on the total energy savings (electricity and heating fuel) of
the package of measures installed in the home (ccASHPs plus any building shell conservation
measures), net of any increase in electricity use from the ccASHP.

4. Any net electricity savings from the package should be directly credited toward the co-op’s
energy savings goal under CIP.

For full discussion of the policy of ccASHPs in Minnesota see ACEEE’s full report in Appendix C.
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Conclusions and Recommendations

Cold-climate air source heat pumps have been identified for their potential to provide significant energy
and cost savings to homeowners without access to natural gas space heating. Additionally, ccASHP can
reduce the reliance these homeowners have on delivered fuels, which can be costly in terms of price,
emissions, and limited availability.

The project concluded that the measured performance of ccASHP installed in real homes confirms the
potential to provide significant site energy savings (37% to 58% of space heating energy use) and cost
savings (28% to 58% of space heating costs). Results also show that ccASHP reduce reliance on delivered
fuels in 56% to 73% of homes. The reduced usage of propane could lead to even greater savings at times
when limited availability makes propane unavailable or cost prohibitive.

Cold climate ASHP performance, in terms of efficiency and capacity, has made dramatic improvements
in the last few years. These improvements opened new applications and system designs. More recently
performance improvements have been incremental and future advances are likely to target improved
applications with further improvement of the controls and integration with the backup systems which
could result in increased utilization of the ccASHP. These improvements would provide less expensive
installations leading to increased applications and even greater savings and further reductions of
delivered fuel consumption.

Fuel switching considerations could have an impact on policies around ccASHP programs and market
transformation. However, several precedents in affordable housing and emission reductions make
programs feasible. Program managers are encouraged to look for opportunities were electrification,
converting to an electric heating source, has significant benefits for the homeowner, utility and society.

For ccASHPs there are several important technical considerations. Because ccASHP performance is
dependent on outdoor air temperature and how the system is integrated with the back-up it is
important to carefully consider the savings for any program design.

Program options for CIP recommendations

e Consider additional metrics which account for benefits beyond site energy savings, including
emission reductions, source energy savings, and costs.

e Ininstances where ccASHP are determined to be beneficial (ie switching off delivered fuels or
replacing less efficient electric resistance heat) there are two options to ensure ccASHP
installations that are capable of achieving good heating performance.

o The program should specific installation requirements both on the technology as well as
the installation.

e Technology: The heat pump shall be inverter drive, have a HSPF > 8, and be sized to meet 100%
of the homes heating load at outdoor temperatures < 10 °F. If installation requires a back-up
heating system to meet the homes load below 10 °F down to the design conditions (-11 °F in
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metro area) the heat pump operation should be prioritized such that back up is only used when
necessary.

o Orthe program could take a tied approach where the expected savings and
performance are based on a calculator or look-up table. Depending on the rated ccASHP
performance, installation, and capacity of the ccASHP a tiered savings could be
determined. The base level savings could be assumed for any heat pump installation, a
larger second tier savings would be given if the equipment meet a minimum rated
performance (i.e. HSPF > 7) and the heat pump was installed such that it would meet
the full load down to a heating moderate temperature (i.e OAT change point < 25 °F),
the largest savings tier would require the highest system performance (i.e. HSPF > 9 and
OAT change point < 5 °F).These tiers and the performance metrics could be determined
through the use of a calculator such as the one developed for this project should in

Appendix B.
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Appendix A: Airflow Methodology

Supply airflow is a crucial measurement for calculating ASHP COP and characterizing the performance of
the system. It is difficult to get an accurate airflow value for the system due to the high variability of the
flow at different parts of the system. CEE researchers have found that the most reliable way to get the
accurate airflows is to correlate the flow to the current draw of the supply fan. A current transformer
was installed on all systems to measure the current flowing to the supply fan and then correlated to
spot airflow measurements that were taken at each site to create a fan curve.

Ducted systems

Spot airflow measurements were taken at the 4 sites with ducted systems with the system set to ‘fan
only’. Three speeds were tested; low, medium and high. The fan was turned on to each speed and a
Trueflow plate was inserted into the filter slot to get the total system airflow in CFM. This value was
recorded along with each supply fan current draw at all three speeds to create a fan curve for each site.
Regression equations were then used to calculate the system airflow in CFM.

Figure 25. Measured airflow vs supply fan amps
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Ductless Systems

Two of the test sites have ductless systems which require a different process to determine the airflow of
the system due to the fact that there is not a standard filter slot. The research team used a garbage bag
and a Duct Blaster fan to measure the flow of the system. The bag was taped around the bottom of the
unit to capture all of the supply airflow. The fan was turned on at one of the four speeds and the bag
filled with air, meanwhile the Duct Blaster fan was turned on to depressurize the bag. Once the
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Appendix A: Airflow Measurement Technology

pressure in the bag reached zero, the airflow of the Duct Blaster fan equaled the overall flow of the
system. This was repeated for all four fan speeds and system airflow was calculated using the same
procedure as with the ducted systems.

Figure 26. Ductless airflow measurement
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Appendix B: ccASHP Calculation Spreadsheet
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Appendix B ccASHP Calculation Spreadsheet

Figure 27. Screen-shot of the ccASHP calculation sheet
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Appendix C: Policy Analysis

Analysis of Policy and Potential for an Electric Co-Op Air
Source Heat Pump Pilot Program to be Incorporated
into Minnesota’s CIP Structure

Technological Opportunity

Advancements in technology for Air Source Heat Pumps (ASHPs) create the potential for substantial
energy efficiency gains in cold climate states such as Minnesota. Due to improvements in such areas as
refrigerants and variable speed drives, the new cold-climate ASHPs can function at temperatures of 0
degrees Fahrenheit or below, and can save 60 to 80% of space heating fuel use or more.

The potential for ASHPs to contribute energy savings for Minnesota is very large. Over 12 % of
Minnesota homes heat with electricity, and another 16% heat with either oil or propane. Together
these represent over 547,000 Minnesota homes. For oil and propane alone, Minnesota homes spent
over $660 million in 2013. The new advanced cold-climate ASHPs provide an opportunity for significant
energy and dollar savings for Minnesota households, and for the state economy.

CEE is presently conducting field trials of ASHP units in a sample of Minnesota homes. If the results of
the field trials document the potential for cost-effective energy efficiency gains, the question then
becomes: what policies could be utilized to facilitate the capture of those energy efficiency savings for
Minnesota?

State Policy Framework in Minnesota

The Conservation Improvement Program (CIP)

Minnesota has a long history of a strong policy commitment to energy efficiency. In many respects, the
Conservation Improvement Program (CIP) policy for electric and natural gas utilities has been the
cornerstone of energy efficiency policy in Minnesota.

CIP has been in operation since the 1980s and was incorporated by Governor Pawlenty into the Next
Generation Energy Initiative of 2007. CIP serves utility ratepayers by avoiding unnecessary and
expensive infrastructure investments. By all accounts, the Minnesota CIP policy has been very effective
at achieving electricity and natural gas savings in Minnesota.
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Appendix C: Policy Analysis

Gaps in Minnesota’s CIP Policy Framework with Regard to ASHPs

The Minnesota CIP policy is directed toward electric and natural gas utilities. While ASHPs do provide
some electricity savings (from air conditioning load, and to the extent they replace other electric space
heating technologies), much of their energy savings (and overall cost-effectiveness) comes from
displacing other space heating fuels that are less efficient (e.g., oil, propane and natural gas). At
present, with a limited exception for certain low-income customers?, there is no way to credit savings in
deliverable fuels (e.g., oil and propane) toward a utility’s CIP goals.

A possible additional impediment to the use of ASHPs under CIP is the issue of fuel switching.
Historically in Minnesota, using a CIP program to encourage a customer to switch fuel sources between
electric and natural gas utilities is at least discouraged, if not prohibited. This issue will be discussed
further in a later section.

To summarize, while CIP provides an excellent policy structure for achieving electricity and natural gas
savings, Minnesota has no comparable structure or funding for achieving heating oil and propane
savings. Yet as we’ve seen in recent years, heating oil and propane costs can be quite a burden on
Minnesota customers.

Other Minnesota Policies for Energy Efficiency

Fortunately, it is the case that Minnesota’s policy commitment for energy efficiency goes beyond just
the CIP policy for those two utility energy sources (electricity and natural gas). Several of these other
policies could be seen as providing support for the concept of encouraging the use of ASHPs to save
energy fuels such as heating oil and propane.

For example, the Next Generation Energy Act of 2007 declared that “the state has a vital interest in
providing for increased efficiency in energy consumption...”, and established a goal for reduction in “per
capita use of fossil fuel...” (Sec. 216¢.05, subdiv. 1 and subdiv. 2).

In addition, Minnesota has established a very strong policy commitment regarding the reduction of
greenhouse gases. As an example, that Next Generation Energy Act also established very aggressive
goals for reduction in “statewide greenhouse gas emissions across all sectors” (Sec. 216H.02, subdiv. 1)

Most recently, in 2015 legislation was enacted (HF 550, commonly known as the “Propane bill”) which
explicitly opened the door to displacing the use of other fuels, such as propane, with a utility fuel source.
For example, in the definition of “Energy improvement”, it included: “the installation of infrastructure,
machinery, and appliances that will allow natural gas to be used as a heating fuel on the premises of a

2 |n an August 3, 2012 policy guidance memorandum, DER declared that electric utilities could provide energy
efficiency measures to low-income customers that used delivered fuels for space and water heat, in conjunction
with the Weatherization Assistance Program, and claim electric savings toward their CIP goals.
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Appendix C: Policy Analysis

building that was previously not connected to a source of natural gas.” (Sec. 6, Subd. 5, (4) ) This
establishment of a public policy to allow expansion of a utility fuel source (natural gas) to displace
propane (and heating oil) use would be analogous to allowing expansion of utility electric energy (via
ASHP equipment) to similarly reduce reliance on propane and heating oil use.

Clearly, there are several established state policies in Minnesota that support the concept of reducing
the use of fossil fuels such as propane and heating oil. The problem is that there is no established
infrastructure and funding source for achieving those savings - - such as exists for electricity and natural
gas under CIP. In the case of ASHPs, there is a technology that could achieve substantial savings in those
fossil fuels (and their associated greenhouse gas emissions), but there is no present way to recognize
those savings in the current application of utility CIP savings goals.

This raises the question: would it be possible to modify the CIP operating protocols such that the fossil
fuel savings from ASHPs could be recognized and credited toward utility CIP goals?

Areas Where CIP Policy Framework Could be Amenable to Fossil Fuel
Savings from ASHPs

To begin, the CIP statute defines “Energy conservation” as “demand-side management of energy
supplies resulting in a net reduction in energy use” [216B.241, subdivision 1(d) ]. This does not restrict
energy conservation to only electricity and natural gas.® It goes on to define “Energy conservation
improvement” as “a project that results in energy efficiency or energy conservation” [subdivision 1 (e),
emphasis added].

Notably, the subsequent language in the statute setting minimum CIP spending requirements and
energy savings goals all uses the terminology “energy conservation improvement”. This would seem to
open the door to some flexibility beyond direct electricity and natural gas savings.

Indeed, there are several examples of just such flexibility. The statute allows for “waste heat recovery”
to be an energy conservation improvement. [216B.241 subdivision 1(e) and subdivision 10]; allows for
natural gas utilities to claim purchases of biomethane as a CIP measure [subdivision 5b]; and allows
electric co-ops to count community solar projects toward their CIP savings goal [subdivision 5¢(2)(c)].

Additional components of the statute that would be supportive of fossil fuel savings include the
requirement for inclusion of participant and “societal” benefits in determining cost-effectiveness
[subdiv. 1c(f)], and the requirement for the Commissioner to report “estimated carbon dioxide
reductions” achieved by the CIP programs [Subdiv. 1c(g)].

3 This is distinct from the subsequent definition of “energy efficiency”, which does specifically mention “electric
energy or natural gas”.
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Interestingly, as previously noted, the DER has already provided* for a limited inclusion of savings in
deliverable fossil fuels for electric utilities under CIP, in the case of low-income customers. In that policy
guidance, the DER included two particular rationales for allowing CIP to incorporate deliverable fuel
savings:

1. An equity concern for ratepayers paying for CIP programs but with little opportunity to benefit:

“First, electric utility customers that use delivered fuels for their space and water heating
equipment do not have access to ratepayer-funded programs that address their space and
water heating equipment because CIP requirements do not apply to delivered fuels providers.”
(p.1), and

2. Benefits to customers and society:

“However, there is opportunity for these customers to benefit from reduced energy
consumption and resulting reductions in fuel expenses, and there is opportunity for society to
benefit from reduced consumption of fossil fuels.” (p.2)

We would note that those two rationales provided by DER for allowing CIP credit for deliverable fuel
savings would also apply to the ASHP program envisioned in this report.

Finally, as another example of “benefits to customers and society” - - with regard to the CIP statute
mention of “demand side management” - - ASHP technology can be (and already is in some cases)
incorporated into load management programs, whereby both summer and winter electric peak load
management benefits can be obtained.

Authority for Further Flexibility Under CIP

Finally, it is important to recall that the statute explicitly provides substantial authority for the
Commissioner to modify a utility’s CIP energy savings goals. The pertinent language reads as follows:

“(d) In its energy conservation improvement plan filing, a utility or association may request the
commissioner to adjust its annual energy-savings percentage goal based on its historical conservation
investment experience, customer class makeup, load growth, a conservation potential study, or other
factors the commissioner determines warrants an adjustment.” [subdiv. 1c(d) emphasis added]

Importantly, the statute does specify that a CIP plan must include savings of at least 1% of a utility’s
gross annual sales, and that these flexible elements would only apply above that 1% savings level. The
statute goes on to list electric utility infrastructure projects and waste heat recovery as examples of
types of additional projects that could be included under this flexibility.

4 CIP Policy Guidelines: Energy Savings from Delivered Fuels, Minnesota Division of Energy Resources, August 3,
2012.
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In summary, the existing CIP statute contains numerous elements that suggest it might be possible, and
consistent with overall state policy objectives, to include fossil fuel savings from ASHPs in a CIP program.
Indeed, the DER has already opened the door to that incorporation of fossil fuel savings in certain low-
income programs.

The Fuel Switching Issue

As in many states, the potential for utilities promoting fuel-switching within an energy efficiency
program has been a concern in Minnesota. The concern focuses on the possibility that a utility might
use its energy efficiency programs as a means to lure customers away from a utility providing a different
energy type, which could adversely affect the interests of the customers of the other utility (to whom
regulators have some responsibility). That concern should not be an issue with the ASHP program being
contemplated here, as there is no second utility involved. Moreover, a careful look at the history of this
issue in Minnesota suggests that it should be possible to avoid having the ‘fuel switching’ concern be a
roadblock to the use of ASHPs in the type of CIP program we are suggesting.

Our analysis of this issue begins with an October 29, 2003 Staff memorandum and accompanying report
by the Minnesota Department of Commerce. The general issue at hand was “cross-fuel conservation”,
and the specific precipitating incident was a Minnegasco program to rebate electricity-driven
equipment. The concern expressed was that Minnegasco did not net out the increase in one fuel that
occurred with the decrease in the other fuel.

“...Advocacy Staff...noted that Minnegasco did not take into account the source Btus that were used to
generate the electricity for the equipment” and recommended that “the Commissioner require
Minnegasco to account for the increase in electric use as well as the decrease in gas use when
performing a benefit-cost analysis.” (p.1)

This concern would not be a problem for the ASHP program being contemplated here, as the program
would be required to demonstrate cost-effectiveness considering the net impact on all fuels.

The precipitating incident led to a Commissioner request for a meeting of interested parties, which
subsequently produced a report entitled “Report to the Commissioner of the Department of Commerce:
BTU Comparison in a Benefit-Cost Analysis for the Conservation Improvement Program, Docket No.
G008/CIP-00-864.07”

The report ultimately contained a recommendation against utility fuel switching programs, but opened
the door to “fuel neutral conservation”, which it defined as follows:

“Fuel-neutral conservation occurs when a utility provides a rebate for an energy-efficient measure
regardless of the fuel source and of whether that utility is the provider of that fuel source.” (p.2)

It also recognized that fuel switching could be cost-effective from a societal perspective:
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“...fuel switching has been defined as “converting customers from one fuel to another when the costs of
conversion are less than the costs to society of not converting.” (p.2)

Thirdly, it called for the use of a “net Btu analysis” when a measure decreased the use of one utility’s
fuel and increased the use of another utility’s fuel, and concluded:

“If the measure is cost-effective from a societal perspective, then a utility could issue a grant, loan or
other incentive to the customer.” (p.3)

The ASHP program being contemplated would be cost-effective from a societal perspective, and would
incorporate a net Btu analysis.

Finally, it should be noted that the entire discussion focused on the issue of fuel switching regarding
electric and natural gas utilities...entities for which the state has specific regulatory responsibilities. The
ASHP program being contemplated does not involve any fuel switching between electric and gas
utilities.

The next document considered in this review was the March 7, 2005 Commission Order in Docket No.
G008/CIP-00-864.07. There the Commission stated that “Targeted fuel-switch projects are not allowed
in the Conservation Improvement Program.”

Here again, the order is explicitly in the context of fuel switching between electric and natural gas
utilities. It does not broach the issue of fuel use changes involving other unregulated fuel sources.
Moreover, the ASHP program being contemplated is not merely a “switch” of fuel types. It involves
substantial conservation of the electric co-ops electricity, through dramatic improvement in air
conditioning efficiency, and through the incorporation of building shell measures, where appropriate.

Furthermore, it is noteworthy that the Order does open the door to recognizing the value of projects
that require saving more than one fuel type in order to be cost-effective.

“Projects that may deem it necessary to have a combination of natural gas and electric energy savings
for the integrity of the project will submit that project to the Minnesota Department of Commerce for
review. Upon completion of the review, the Deputy Commissioner will issue a decision on the project,
including a limit on expenditures for the project.” (p.2)

Finally, the order concludes with an explicit statement that the Department does not want to discourage
programs that save multiple fuels.

“The intention of the Department is to encourage energy-saving projects that will continue to provide
specific optimal energy savings while not discouraging programs that save both electricity and natural

gas.” (p.3)
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The final document we would note is an October 8, 2013 posting by the Minnesota Department of
Commerce®, addressing the issue of combined heat and power systems and the implications for fuel
neutrality and fuel switching. The document notes the historical prohibition on fuel switching in CIP,
and that “unlike traditional natural gas efficiency programs, CHP will likely increase the natural gas
consumption.”

Importantly, the entire focus of the discussion is once again on the effect of fuel switching between
electric and natural gas utilities.

“How should fuel switching concerns be handled so that one utility customer of a specific fuel type
(electric) is not subsidizing the cost of CHP project incentives or utility load building that may be
provided to another utility customer for a different fuel type (natural gas)?” (p.4)

Clearly that electric vs. gas utility customer protection issue is not a concern for the ASHP program being
contemplated here, as there is no natural gas utility involvement.

In addition, this document once again emphasizes the need to consider the net change in total energy
consumption after considering any increases and decreases in the use of different types of fuels (p.4).
That is what is being proposed for the ASHP program being contemplated here.

Lastly, the document also explicitly notes as a rationale for CHP that “these improvements can lead to a
reduction in carbon emissions and greenhouse gases while helping Minnesota achieve its energy policy
goals.” (p.2) That is a rationale that applies to the ASHP program as well.

In summary, while there is technically a history of prohibition against programs featuring targeted fuel
switching between electric and natural gas utilities, we could find no specific rulings regarding programs
that do not involve a fuel switch between electric and natural gas utilities. Moreover, we found
considerable support for the concept of using a multi-fuel net Btu savings basis for judging whether a
project is desirable and cost-effective. Finally, as previously noted, Minnesota statute gives
considerable discretion for the Commissioner to approve alternative approaches in a utility’s CIP plans
(e.g., waste heat recovery, biomethane gas production, community solar, etc.)

For all of these reasons, we believe that the historical concern regarding fuel switching between utilities
should not be a barrier to the ASHP program being contemplated here.

Other Benefits to Minnesota

In addition to serving the broad state policies of reducing fossil fuel use and reducing greenhouse gas
emissions, increasing the use of ASHPs can provide other economic benefits to the state as well. Data
from the U.S. Energy Information Administration confirms that Minnesota has to import 100% of the
heating oil and propane consumed in the state. In recent years, Minnesota households have spent over
$660 million on heating oil and propane. To the extent that ASHPs can reduce that dollar drain, that

5 MDOC DOER Energy Savings Goal Study call for comments.
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would keep more money circulating in the Minnesota economy. This type of concern was no doubt part
of the rationale for the “Propane Bill” HF 550 mentioned earlier.

There seems little doubt that reducing the importation of propane and heating oil from other states
would be beneficial to the state of Minnesota. The pertinent question is: could the cornerstone energy
conservation policy vehicle in Minnesota...the CIP program...be utilized to help achieve that objective?

Recommendations

Based on the results of our review, we would recommend the following.

Using the authority for flexibility provided in the CIP statute [216B.241, Subdivision 1c(d) ], one or more
electric co-ops should submit in their CIP plan filings, proposals for pilot programs to promote ASHPs.
The proposed programs should contain the following elements.

1. The program should be targeted to existing homes that use electricity, propane or heating oil as
their space heating fuel (not utility natural gas)®. All income levels would be eligible.

2. To help ensure that the program is genuinely focused on energy conservation, the program
should include incentives and assistance to facilitate building shell conservation improvements
(i.e., insulation and air sealing) in the homes that install ASHPs. (The Department may want to
consider making the installation of any cost-effective shell improvements a pre-condition for
receiving the ASHP incentive.)

3. Cost-effectiveness would be based on the total energy savings (electricity and heating fuel) of
the package of measures installed in the home (ASHPs plus any building shell conservation
measures), net of any increase in electricity use from the ASHP.

4. Any net electricity savings from the package would be directly credited toward the co-op’s
energy savings goal under CIP.

5. As long as the co-op meets the minimum 1% electricity savings from its normal CIP programs,
any net savings in propane or heating oil from this ASHP program could be applied to the co-
op’s CIP energy savings goal above the 1% level (using an appropriate mmbtu to kWh

conversion).

Attachment A provides a generic example description of the type of program envisioned in the above
recommendation.

6 Because Minnesota already has an effective policy structure and funding source for achieving natural gas savings,
and because including natural gas would raise concerns about fuel switching between utilities, we are
recommending that these pilot projects not target homes heated with utility natural gas.
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Example Air Source Heat Pump (ASHP) Pilot Program’

Utility XYZ has a special energy saving program for customers that heat primarily with electricity,

propane or fuel oil. Save on your heating and cooling bills by participating in our new high efficiency air

source heat pump (ASHP) program.

Improve the comfort, safety and durability of your home with energy saving measures such as air source

heat pumps, air sealing, ceiling insulation and wall insulation to earn rebates up to $

Program Amount

Proper Installation Rebate S50 rebate

ENERGY STAR® ASHP Rebate
S400 rebate

Combo Rebate on ENERGY STAR®

ASHP and ECM Fan Motor $400 rebate for ENERGY

STAR® ASHP (plus $200
rebate for new ECM Fan
Motor)

Combo Rebate on New Forced Air
Furnace with ECM Fan Motor and
Properly Installed ENERGY STAR®

ASHP

S600 rebate

Mini-Split Ductless ASHP System

Rebate S500 rebate

Ceiling Insulation $400 rebate

Product

Proper installation of ENERGY STAR® ASHP)
[e.g., ACCA MANUAL J AND MANUAL S
REQUIREMENTS]

ENERGY STAR® ASHP

[MAY WANT TO SPECIFY DIFFERENT REBATE
LEVELS FOR DIF. TIERS OF SEER, EER AND
HSPF]

Proper installation of ENERGY STAR ® ASHP
with integrated all season, whole house
applicable ECM Fan Motor on existing forced
air furnace

New forced air furnace with ECM fan motor
and properly installed ENERGY STAR® ASHP

Mini-split ductless system for homes that do

not have ducts

Note: Electricity must be the existing primary
heating source

[GIVE ANY DETAILS HERE]

6 This is just a generic program example. Specific details could vary, including rebate amount and equipment

specification.
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Wall Insulation $400 rebate [GIVE ANY DETAILS HERE]

Air Sealing with Blower Door Test $200 rebate [GIVE ANY DETAILS HERE]

IMPORTANT to advise customers: If an ASHP is the main heating source, customer will need a backup
heat source when temperatures are below XX°F, typically mid-November through mid-March.

Additional Details on Program Rebates Available

(Note: homes heated with utility natural gas are not eligible for this special program.)

Proper Installation Rebate - 550

Offers a $50 rebate on the proper installation of an ENERGY STAR® Air Source Heat Pump (ASHP). The
ASHP can be furnace integrated or mini-split ductless.

Customer must purchase and have installed a new ENERGY STAR® ASHP by [DATE]. Customer must use a
program participating contractor to qualify for the rebate. Contractors will complete the paperwork
necessary for the rebate.

ENERGY STAR® ASHP Rebate - $400

Offers a $400 rebate on ENERGY STAR® qualified, furnace integrated Air Source Heat Pumps (ASHP) with
proper installation.

Customer must purchase and have installed a new ENERGY STAR® qualified, furnace integrated ASHP by
date. Customer must use a program participating contractor to qualify for the rebate. Contractors will
complete the paperwork necessary for the rebate.

Applies to both replacement of non-ENERGY STAR® ASHPs and new ASHPs.

Combo Rebate on ENERGY STAR® ASHP with New ECM Fan Motor -
S600

Offers a $600 combo rebate on the proper installation of a new ENERGY STAR® qualified, furnace
integrated Air Source Heat Pump (ASHP) plus an all season, whole house applicable Electronically
Commutated Fan Motor (ECM) in an existing, non-electric forced air furnace.

Customer must purchase and have installed a new ENERGY STAR® qualified, furnace integrated ASHP
plus an all season, whole house applicable ECM in an existing, non-electric forced air furnace by date.
Customer must use a program participating contractor to qualify for the rebate. Contractors will
complete the paperwork necessary for the rebate.
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Applies to both replacement of non-ENERGY STAR® ASHPs and new ASHPs.

Combo Rebate on ENERGY STAR® ASHP and ECM Fan Motor in New
Forced Air Furnaces - S600

Offers a $600 combo rebate on new forced air furnaces (gas, propane, or oil) with integrated
Electronically Commutated Fan Motors (ECM) and properly installed of a new ENERGY STAR® qualified
furnace integrated Air Source Heat Pump (ASHP).

Customer must purchase and have installed a new forced air furnace with an integrated ECM and
properly installed new ENERGY STAR® qualified furnace integrated ASHP by date. Customer must use a
program participating contractor to qualify for the rebate. Contractors will complete the paperwork
necessary for the rebate.

New Mini-Split Ductless ASHPs for Homes with Electricity as the
Primary Heating Source - 5500

Offers a $500 rebate on Mini-Split Ductless Air Source Heat Pump (ASHP) systems for homes that do not
have ducts and have electricity as the primary heating source and a minimum of two indoor units.
Includes mini-split ductless heat pumps with electric baseboard/radiant heating, slab heating or electric
boiler as the primary heating system. New installations only.

Customer must purchase and have installed a new qualifying Mini-Split Ductless ASHP (SEER > 16 and
HSPF > 9). Customer must use a program participating contractor to qualify for the rebate. Contractors
will complete the paperwork necessary for the rebate.
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