Outdoor Worker Safety
Tick and Mosquito Bite Prevention

Dr. Jenna Bjork, DVM, MPH
Vectorborne Diseases Unit
Infectious Disease Epidemiology, Prevention, & Control
Minnesota Department of Health
625 North Robert Street Saint Paul, MN 55164
651-201-5414

September 30th, 2015

Outline of Presentation
Overview of the MDH Vectorborne Diseases Unit
Tickborne Diseases of MN
Mosquito-borne Diseases of MN
Prevention Summary

MDH Vectorborne Diseases Unit
Agency/Organization
- Health Protection Bureau
- Infectious Disease Epidemiology, Prevention, & Control Division

Responsibilities
- Conduct surveillance for vectorborne diseases in MN
- Diseases transmitted primarily by ticks and mosquitoes
- Blood transfusion associated infections also

Activities
- Disease Surveillance
- Humans, animals, vectors
- Research
- TickNET
- Community Outreach
- Health Care Providers
- Occupational Health Professionals

Tickborne Diseases of MN
3 Ticks of Public Health Concern in MN

<table>
<thead>
<tr>
<th>Blacklegged (Deer) Tick</th>
<th>American Dog (Wood) Tick</th>
<th>Lone Star Tick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyme disease</td>
<td>Rocky Mountain Spotted Fever</td>
<td>Ehrlichiosis</td>
</tr>
<tr>
<td>Human anaplasmosis</td>
<td>Tularemia</td>
<td>Tularemia</td>
</tr>
<tr>
<td>Babesiosis</td>
<td>Ehrlichiosis (E. muris-like)</td>
<td>STARI</td>
</tr>
<tr>
<td>Ehrlichiosis</td>
<td>Powassan virus</td>
<td></td>
</tr>
</tbody>
</table>

Blacklegged Tick Life Cycle

- Very, very small
- Size of a period at end of sentence
- Not known to transmit disease agents to humans
- Acquire disease agents during first blood meal

Blacklegged Tick Larvae
Blacklegged Tick Nymphs

- Very Small
 - Size of a poppy seed
- Transmit most cases of human disease
 - Difficult to detect!

Blacklegged Tick Adults

- Small
 - Size of a sesame seed when unfed
 - Size of a watermelon seed when engorged
- Feed and mate in the early spring or fall

Blacklegged Tick Habitat

Minnesota Biomes

- Coniferous and mixed forest
- Prairie grassland
- Deciduous forest

Image Modified from Minnesota DNR: [Click here for more information](https://www.dnr.state.mn.us/biomes/index.html)
Minnesota Tickborne Disease Risk

Tickborne disease risk is confined to forested areas throughout the state.

Take precautions to prevent tick-borne disease when visiting these areas.

Blacklegged Tick Questing

What they do:
- Live on forest floor, in leaf litter
- Search for a host from the tips of low-growing vegetation
- Sense biochemical cues
 - CO2, body heat, vibrations, etc.
- Climb onto a person/animal near ground level

What they don’t do:
- See
- Jump
- Fly
- Fall from treetops

Blacklegged Tick Disease Transmission

- In order for a tick to spread disease:
 1. The tick must be able to transmit a disease agent during feeding
 - Nymphs and Adult Females = Highest Risk
 2. The tick must be infected with a disease agent
 - A high proportion of ticks are infected with a disease agent, but not all
 3. The tick must be attached for a certain amount of time
 - Lyme disease: 24-48 hours
 - Anaplasmosis: 12-24 hours
 - Babesiosis: >24 hours
 - Powassan: Possibly <15 minutes (in mice studies)

Bottom Line: Remember to check yourself for ticks at least once a day!

Blacklegged Tick Average Infection Prevalence*

<table>
<thead>
<tr>
<th>Disease Agent</th>
<th>Adults</th>
<th>Nymphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrelia burgdorferi</td>
<td>34.4%</td>
<td>17.3%</td>
</tr>
<tr>
<td>Anaplasma phagocytophilum</td>
<td>6.5%</td>
<td>8.1%</td>
</tr>
<tr>
<td>Babesia microti</td>
<td>7.7%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Ehrlichia muris-like agent</td>
<td>2.5%</td>
<td>3.6%</td>
</tr>
</tbody>
</table>

*These are preliminary results based on test results from the collection of blacklegged ticks from various sites in Minnesota from 2006-2011.
Lyme Disease
- *Borrelia burgdorferi*
- Symptoms (3-30 days after tick bite)
 - Characteristic Rash
 - Fever
 - Muscle and joint pain
 - Fatigue
 - Pain and swelling in large joints
- Diagnosis
 - Exposure to ticks or wooded areas
 - Physical examination
 - Laboratory tests: bloodwork, joint tap
- Treatment
 - Antibiotics

Human Anaplasmosis & Ehrlichiosis (EML)
- Closely related diseases:
 - *Anaplasma phagocytophilum*: Human anaplasmosis endemic to MN
 - *Ehrlichia chaffeensis* & *E. ewingii*: Human ehrlichiosis uncommon in MN
 - 2009 - detection of new pathogen unique to MN and WI: *Ehrlichia muris*-like agent
- Symptoms (3-21 days after tick bite)
 - Many cases have no symptoms
 - Fever
 - Severe headache
 - Muscle aches
 - Severe complications and death possible
- Diagnosis
 - Laboratory tests: bloodwork
- Treatment
 - Antibiotics

Babesiosis
- *Babesia microti*
- Symptoms (3-60+ days after tick bite)
 - Most cases have no symptoms
 - Fever
 - Headache
 - Fatigue
 - Muscle and joint aches
 - Loss of appetite and nausea
 - Severe complications and death possible
- Diagnosis
 - Laboratory testing: bloodwork
- Treatment
 - Combination of anti-protozoal and antibiotic

Powassan Virus Disease
- *Powassan virus*
 - Flavivirus closely related to West Nile Virus
- Symptoms (7-30 days after tick bite)
 - Clinical spectrum not fully known
 - Some cases may have no symptoms or only a mild fever
 - Severe cases: encephalitis/meningitis
 - Long-term neurologic problems may occur
 - Death possible
- Diagnosis
 - Laboratory testing: bloodwork/spinal tap
- Treatment
 - No specific anti-viral medication
 - Supportive care for severe cases
Rocky Mountain Spotted Fever

- *Rickettsia rickettsii*
 - Rarely occurs in Minnesota
- Symptoms (~7 days after tick bite)
 - Fever
 - Characteristic rash
 - Headache
 - Muscle aches
 - Nausea, vomiting, diarrhea, abdominal pain
 - Death possible if not treated promptly
- Diagnosis
 - Laboratory testing: bloodwork
- Treatment
 - Antibiotics
 - Treatment should not be delayed in suspect cases

Tularemia

- *Francisella tularensis*
 - Rarely occurs in Minnesota
- Symptoms (~3-5 days after tick bite)
 - Fever
 - Headache
 - Ulcer
 - Cough, chest pain, sore throat
 - Vomiting, diarrhea, abdominal pain
- Diagnosis
 - Laboratory testing: bloodwork/culture
- Treatment
 - Antibiotics

Reported Tickborne Disease Cases
Minnesota, 2000-2014

Distribution of MN Lyme Disease Cases
by County of Residence, 1996-2013

Incidence Rate (cases/100,000 person-years)

- 0.0 – 1.0
- >1.0 – 10.0
- >10.0 – 50.0
- >50.0
Reported Tickborne Disease Cases by Onset Month, Minnesota, 1999-2008
(n=7,897*)

*Excluding Lyme disease cases without EM and cases with unknown onset

Reported Tickborne Disease Cases by Age at Onset, Minnesota, 1999-2008
(n=9,247*)

*Excluding cases with unknown age

Protect Yourself from Tickborne Diseases

1) Know when and where you’re at risk
 - Primarily Mid-May through mid-July
 - Wooded and brushy areas
2) Wear tick repellent
 - DEET 20-30% on skin or clothing
 - Permethrin 0.5% on clothing
3) Check yourself for ticks
 - At least once a day
 - Remove ticks ASAP!

Other ways to reduce your risk of tick encounters

- Keep trails mowed short
- Remove leaf litter and brush
- Create a barrier between your yard and woods
- Apply pesticide to high traffic/high risk areas
- Talk with your vet about tick preventatives for your pets
Vectorborne Disease Cases by Month of Onset
Minnesota, 1986-2009

Spring-Mid Summer
Tickborne Disease

Mid Summer - Fall
West Nile Virus

Fall
Tickborne Disease

Month of Illness Onset

Percent of Disease Cases

0%
10%
20%
30%
40%
50%

Apr May Jun Jul Aug Sep Oct Nov

Minnesota’s Endemic Mosquito-borne Diseases

• West Nile virus disease
 • Culex tarsalis
• La Crosse encephalitis
 • Aedes triseriatus
 (‘tree-hole’ mosquito)
• Jamestown Canyon virus disease
 • Aedes genus
 (‘snow-melt’ mosquitoes)

Mosquito-borne Diseases of MN

Non-Endemic Mosquito-borne Diseases in Minnesota

• Malaria
• Dengue fever
• Chikungunya
• Zika virus

Aedes aegyptii

Anopheles gambiense

Aedes albopictus
West Nile Virus

- Virus first identified in US in 1999
 - First case in MN in 2002
- Vector: Culex tarsalis
- Symptoms (most severe in elderly population)
 - Most cases have no symptoms
 - Fever, headache, fatigue, rash
 - Meningitis or encephalitis, death rare but possible
- Diagnosis
 - Laboratory testing: bloodwork/spinal tap
- Treatment
 - No specific anti-viral medication
 - Supportive care
 - Hospitalization for severe cases

Culex tarsalis

- Widely distributed in Western US
- Temporary/semi-permanent bodies of water
- Feed on wide range of species
 - Prefer birds
- Most active at dusk and dawn

The WNV Transmission Cycle

- Reservoir hosts
- Mosquito vector
- Incidental transmission
- Dead-end hosts
- Primary transmission cycle

La Crosse Encephalitis

- First identified in a MN resident, a child who died in a La Crosse, WI hospital, in the early 1960’s
- Vector: Aedes triseriatus (‘tree-hole’ mosquito)
- Symptoms (most severe in children < 16 yrs)
 - Many cases have no symptoms
 - Fever, headache, nausea, vomiting, fatigue
 - Encephalitis, often accompanied by seizures
 - Coma, paralysis, and death possible
- Diagnosis
 - Laboratory testing: bloodwork/spinal tap
- Treatment
 - No specific anti-viral medication
 - Supportive care with hospitalization
Aedes triseriatus

- Found in the Eastern US
- SE corner of MN
- Forest-dwelling mosquito
- Small water-holding containers
- Feed on a variety of species
- Prefer chipmunks/squirrels
- Daytime feeders

The La Crosse Transmission Cycle

1. **Mosquito vector**
2. **Reservoir**
3. **Dead-end host**

Jamestown Canyon Virus

- First isolated from a mosquito in Colorado in 1961
- Reportable in US since 2004
- Very rare
- Vector: Aralin genus (‘Snow-melt’ mosquitoes)
- Likely widely distributed in Minnesota
- Deer thought to maintain virus in nature
- Symptoms
 - Clinical spectrum is unclear
 - Fever, headache, flu-like illness
 - Encephalitis and meningitis
- Diagnosis
 - Laboratory testing: bloodwork/spinal tap
- Treatment
 - Supportive care

Protect Yourself from Mosquito-borne Diseases

1. **Know when and where you’re at risk**
 - Primarily mid-July through mid-September
 - Western agricultural areas of the state
2. **Avoid mosquito bites**
 - Avoid outdoor activities from dusk to dawn
 - Wear long-sleeved shirts and long pants
 - Light-colored, loose-fitting clothing works best
 - Install and repair door/window screens
3. **Wear mosquito repellent**
 - DEET 20-30% on skin or clothing
 - Permethrin 0.5% on clothing
 - Others: picaridin, IR3535, and oil of lemon eucalyptus
Protect Your Environment from Mosquito-breeding Habitat: Can you find 5 ways to reduce standing water in these pictures?

Vectorborne Disease Prevention

Take-Home Prevention Messages

5. Know when and where you are at risk for tickborne diseases:
 • Wooded or brushy areas – don’t forget about the edges of the woods too!
 • Primarily mid-May through mid-July

4. Mosquitoes may seem bad early in the summer but these are mainly just pest species; be aware of mosquito-borne diseases later in the summer, even though the mosquitoes aren’t as bothersome.

3. Blacklegged ticks are small and hard to detect but you can significantly reduce your risk of tickborne disease by performing tick checks frequently and removing ticks as soon as possible.

2. If you spend time outdoors in tick or mosquito habitat, wear appropriate clothing & use repellent!
 • DEET-based repellents (20-30%) can be applied to clothing or skin
 • Permethrin-based products can be applied to clothing/gear (NOT skin)

1. Not everyone knows when they have been bitten by a tick/mosquito so watch yourself for signs of illness (fever, rash, headache, muscle aches, fatigue, etc.) and contact your doctor if you become sick.

For More Information

Vectorborne Disease Unit
Minnesota Department of Health
625 Robert Street North
Saint Paul, MN 55164
651-201-5414
jenna.bjork@state.mn.us
http://www.health.state.mn.us/divs/idepc/dtopics/vectorborne/index.html