Industrial Hygiene in Review

Exposure Monitoring

- Why Sample?
 - OSHA Compliance (PEL)
 - Verification that engineering controls are effective
 - Respiratory Protection Programs
 - Proper respirator (half-mask, full-face, etc.)
 - Cartridge change schedules
 - Hearing Conservation Program
 - Do you have a forklift?

IH in Review

- Exposure Monitoring
- Respirators
- Noise
- Managing IAQ
- Water Intrusion
- Lab Hoods
Exposure Monitoring

• Who do you monitor?
 – Inventory workplace hazards
 ▪ Hazardous Substances
 ▪ Harmful physical agents
 – Monitor employees with routine exposure to the various hazards identified

Exposure Monitoring

• What do you sample for?
 – Hazardous Substances
 ▪ Dusts
 o Particle Size
 o ‘Total dust’, inhalable, respirable
 o Silica, wood dust, lead
 ▪ Gasses/Vapors
 o Various solvents
 o CO from forklifts
 ▪ Fume
 o Welding – hexavalent chromium, manganese
 – Harmful Physical Agents
 ▪ Noise
 ▪ Heat Stress Monitoring

Exposure Monitoring

• When do you sample?
 – Periodically
 – New equipment
 – Change of procedure
 – Change of chemical/material used

Exposure Monitoring

• Where do you sample?
 – Personal Samples - used to compare the occupational exposure limits
 ▪ Breathing Zone
 ▪ Hearing Zone
 – Area
 ▪ Noise
 ▪ Hot Environments
 – Source
Exposure Monitoring

• What do you compare results to?
 – OSHA Permissible Exposure Limits (PEL)
 ▪ 8-Hour Time Weighted Average (8-hour TWA)
 ▪ Short Term Exposure Limit (STEL)
 ▪ Action Limits
 ▪ Ceiling Limit
 – American Conference of Governmental Industrial Hygienists (ACGIH)
 ▪ Threshold Limit Values (TLV©)

Exposure Monitoring

• How to Sample......

Exposure Monitoring

• Particulate

Exposure Monitoring

• Particle Size Selective Sampling
• Gas and Vapors

• Passive Samplers

• Real Time Monitors/Data-logging

• Confined Space Monitoring
 – Keep units calibrated/sensors up to date
 – Test equipment in known clean atmosphere prior to use
 – Must test (in this order)
 o oxygen level
 o combustible gases and vapors
 o toxic contaminants
 – Test atmosphere at bottom, top and middle
Exposure Monitoring

• Gas and Vapors – Active Sampling

Respirators

• What do you need to have in place for your program?
 – Exposure results if you have them.
 ▪ Are respirators required?
 ▪ What level of protection is needed?
 ▪ Is respirator use voluntary?
 – Medical Evaluations
 – Fit Testing
 – Cleaning/Storage
 – Training

Respirators

• Voluntary Use
 – When can use of respirators be voluntary?
 – What do you need to do?
Respirators

- Filtering Face-piece respirators
 - Employer determines that the respirator itself does not create a hazard.
 - Must provide users with info contained in Appendix D.
 - No written respirator program required.

- Elastomeric Respirators
 - Employer must have written program that covers the elements that could affect the health of any employee including:
 - Medical Evaluation
 - Cleaning
 - Disinfecting
 - Storage
 - Maintenance
Noise

• What do you need to have in place for your program.
 – Find out what the exposure is....

Noise

• Area Spot Samples
 – Using SLM

Noise

• Noise Dosimeter

Noise

• Monitoring results
 – HC Amendment
 ▪ Integrating 80 to 130 dBA
 ▪ Greater than or equal to 85 dBA (8 hour TWA) – Action Level
 ▪ Annual hearing checks
 ▪ Training
 – Effects of noise on hearing
 – Hearing protection devices
 – Explanation of audiometry
Noise

- PEL
 - Integrating 90 to 140 dBA
 - Greater than 90 dBA 8 Hour TWA
 - Hearing protection mandatory

Managing Indoor Air Quality

- Problem Areas
 - Thermal Comfort
 - Outdoor Air Ventilation
 - Operations and Maintenance
 - Water Intrusion and Moisture
 - Communication

Managing Indoor Air Quality

- Thermal Comfort
 - Fall, Winter and Spring
 - 70 - 74 degrees
 - 68 - 70 and 74 - 76 are considered borderline
 - below 68 or above 76 is unacceptable
 - Summer
 - 72 - 76 degrees
 - 68 - 72 and 76 - 78 are considered borderline
 - below 68 or above 78 is unacceptable
 - Governors Executive Order
 - Summer 76 – 78 °F
 - Winter 68 – 70 °F
- Recommended Humidity
 - 20 to 50 percent (60 percent upper limit)
Managing Indoor Air Quality

Common Causes of Temp. Problems
- Poor Thermostat Location
- Solar Radiation
- Improperly Designed HVAC System
- Restricted Air Flow Patterns
- Excessive Personnel or Equipment Loading
- Excessive Outdoor Air

Introduction

Outdoor Air Ventilation
- Minnesota Rules 5205.0110 - Workroom Ventilation and Temperature
- Outside air ventilation requirement of 15 cubic feet per minute per person
- also identifies temperature and humidity extremes

ASHRAE 62.1 - Ventilation for Acceptable Air Quality (American Society of Heating Refrigerating and Air-Conditioning Engineers)
- Guidelines established by the HVAC Industry Professionals (constant revision)
- establishes ventilation rates for various types of occupied spaces based on number occupants and floor area (default of 17 cfm/person)

Use of Carbon Dioxide
- Be careful using spot measurements
- Best to data-log over several days
• Operations and Maintenance
 – Housekeeping
 ▪ Quality Vacuums
 o Carpet and Rug Institute
 ▪ Upholstered chairs and furniture
 o Vacuum annually
 ▪ Supply and Returns

• Operations and Maintenance
 – Construction Projects
 – Renovations
 – Painting
 – New Carpet
 – Roof Jobs

Outdoor Air Intake Location
- Outdoor contaminant sources
- Building Exhaust
- Vehicle Exhaust
- Smoking
- Roof Jobs
Operations and Maintenance

Outdoor Air Intake/Damper - Check That:
- Dampers open and close freely
- Minimum setting established for dampers
- Bird screen in place and clean
- No dirt, debris or water accumulating in intake area

Managing Indoor Air Quality

System Filtration
ASHRAE Standard 52.2-1999
- MERV Rating (MERV 8 – 9 minimum)

Heating Coil
- Inspect after filter failure or Annually
- Clean every 10 years minimum

Cooling Coils
- High humidities create excellent breeding ground for microbials
- Clean cooling coils and adjacent ductwork (within 5 - 10 feet) semiannually
- Annual cleaning acceptable if filtration efficiency is greater than 60% dust spot efficiency
Drain Pan
- Clean pan semiannually
- Verify proper drainage
- Install water trap if not present

Humidification
- Steam systems
 - Should be "clean steam" not treated boiler water
 - Wand and adjacent surfaces should be cleaned semiannually
- Non-steam systems
 - Potential source of bioaerosols (e.g., bacteria)

Operation and Maintenance
Supply and Return Diffusers
- Eliminate obstructions
- Verify proper airflow
- Periodically vacuum any dust accumulation from diffuser and surrounding ceiling tiles

Managing Indoor Air Quality
- Communication
 - The Basics
 - Have a mechanism in place for occupants to relay concerns
 - Follow-up important
 - Keep occupants updated on any IAQ investigation planned or on-going, corrective actions, etc.
 - Notify occupants of planned projects (e.g., roofing project)
Water Intrusion Response

• One-Time Problems
 – Rainwater/roof leaks
 – Pipe breaks
 – Floodwater
 – Sewage back-up
• Chronic Moisture Problems
 – Condensation Problems
 ▪ Cold Water Pipes
 ▪ Mechanical Systems

Chronic Problems
Water Intrusion Response

- Respond within 24 to 48 hours
- Determine the source of water
- Stop the water
- Determine the scope of the water intrusion
- Inventory the types of materials that got wet.
 - Porous, Semi-Porous and Non-Porous

Water Intrusion Response

- Determining Scope of Water Damage
 - Visual Inspection
 - Use Moisture Meters
 - Infrared Cameras

Water Intrusion Response

- If floodwater or sewage - remove and discard of all wet materials.
- Make all attempts to dry out materials - floor fans, HVAC operation, carpet extraction, dehumidifiers.

Drywall Response

- One solution is to remove water damaged sheetrock within 24 hours
- New sheetrock installed 1/2 inch from floor
- Might try if prior contamination is not present....
- Remove vinyl/carpet wall covering/baseboards
- Cut ventilation holes (interior/non-insulated walls)
- Fans and dehumidification
- Contact Restoration Firm
Carpet Response

- Remove all items from carpet including movable office furniture
- Following cleaning procedure prescribed by UofM web site http://www.dehs.umn.edu/iaq/flood.html
- Multiple pass extraction (dry) necessary
- If carpeting develops odor or visible mold growth, replace carpeting

Water Intrusion Response

- Sewage back-up or dirty water
 - Remove and dispose all contaminated building materials
 - Disinfect entire area
 - Need to consider worker safety issues

Water Intrusion Response

For Property/Contents insured through Risk Management

- Flood claims reporting:
 - Business Hours - Risk Management Division 651-201-2592

Lab Hoods
Laboratory Hoods

• New Installations
• Annual Testing

• New Installations
 – Should follow ASHRAE 110 standard
 § Smoke visualization
 § Air velocity measurements
 § Tracer gas monitoring

Laboratory Hoods

• Annual Inspections
 – Sash condition
 – Flow monitors
 – Air velocity

Lab Hood Inspection

<table>
<thead>
<tr>
<th>Hood: S-2373-2</th>
<th>By: JSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 7/16/15</td>
<td>Sash Setting (in.): 18</td>
</tr>
<tr>
<td>Average Face Velocity (fpm): 109</td>
<td></td>
</tr>
<tr>
<td>Inspection Due: 7/16/16</td>
<td></td>
</tr>
</tbody>
</table>

Questions?