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Introduction 
 
 Our primary goal was to create a map of generalized ecological potential for the 8 
range of natural variation (RNV) ecosystem classes for the Northern Superior Uplands 
ecological section (Frelich 1999).  The natural range of variability has been shown to be a 
useful concept for both evaluating the extent of change from historical conditions and for 
creating tangible models of sustainable ecosystems (Morgan et al. 1994).   
 

At present, the finest level of ecological classification that exists for the Northern 
Superior Uplands is the Land Type Association (LTA).  Our objective was to create a 
map that nests within the current ecological classification system and shows some of the 
potential variability of upland and lowland habitats within LTAs. 
 
 We mapped the 8 ecosystem classes based on the relationship between sample 
vegetation data representing these broad habitat classes and a suite of environmental 
variables representing soil, landform and climate patterns in the Northern Superior 
Uplands.  In this report we document our methods, data sources and initial results 
including an accuracy assessment. 
 

Methods 
 

A variety of methods have been used to map habitat or native ecosystem types.  
Allen and Wilson (1991), and Palik et al. (2000) used Discriminant Functions analysis 
with vegetation data and environmental variables to map potential vegetation with overall 
accuracies of approximately 60%.  Decision tree models have also proven to be useful for 
landscape scale ecosystem classification (Moore et al. 1991, Lynn et al. 1995).  Host et 
al. (1996) integrated soil, landform and climate data in GIS to create an LTA level 
ecosystem classification for northwestern Wisconsin.   

 
On the Chippewa National Forest relatively fine scale mapping was accomplished 

using digital soil series data, bearing tree data, surveyor line notes, and an existing phase 
level classification integrated within a GIS (D. Shadis, pers. comm.).   
 

The Boise Cascade Corporation mapped habitat type classes for a portion of the 
Northern Minnesota and Ontario Peatlands (MNOPS) using a decision tree modeling 
approach utilizing the relationships between habitat type samples and soil characteristics, 
surficial geology, topographic variables, climate,  presettlement vegetation, and other 
predictive variables (Kernohan and Dunning 1998).  They reported user’s accuracies 
ranging from 13 to 76%, with an overall accuracy of 60%. 
 
 In the Northern Superior Uplands, soil, landform and climate data are relatively 
coarse with minimum mapping units ranging from 16 to 100 ha.  Forest inventory and 
satellite based classifications are the only synoptic vegetation databases.  Given these 
limitations, we developed an approach that integrates the climate and physiographic data 
into a composite map which nests within existing Land Type Association boundaries.  
We then used association analysis methods to relate RNV classes as represented by 
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vegetation sample data to the composite physiographic map units.  Based on this 
association analysis, we developed decision rules that classify each map unit into the 
highest probability RNV class.   
 
Classification of vegetation sample data into RNV classes 
 
 In order to develop a vegetation sample database of sufficient size and spatial 
distribution, we acquired data from five sources (Table 1.).  Forest inventory data were 
initially filtered based on the criteria listed in Table 1.  We classified this data into RNV 
types through a two-stage process.  First, we cross-classified Natural Heritage Program 
Native Plant Community Classes into the eight RNV types.  This was done in 
consultation with NHP and CBS staff.  We then developed classification criteria based 
primarily on woody plant composition and structure from NHP native plant community 
descriptions (Rusterholtz 1999) and NSU releve data.  For the MN DNR and FIA data, 
we used relative abundance of tree species as the primary classification variable.  We 
could not derive detailed relative abundance values from the Superior National Forest 
data, so cover type and species composition data were used.  Natural Heritage program 
releve points were coded into RNV classes based on the cross-classification of Native 
Plant Communities to RNV classes.  Since sufficient inventory or other vegetation data 
were not available for the Boundary Waters Canoe Area Wilderness, we used classified 
satellite data for this region. 
 
Table 1.  Vegetation data sources and attributes used for classification into RNV types. 
Data Source Classification Attributes  Initial Screening Criteria      N 
MN DNR Phase2 Inventory Relative Volume by Species Natural Regeneration 6400
  Shrub/Groundlayer Data, Cover Type Field Inventory,  >= 40 years age   
      
FIA Re-measurement Points Relative Basal area by species Natural Regeneration 1245
  Cover type Field Inventory   
    >= 40 years age   
Superior National Forest Primary-secondary cover type Field Inventory 13900
 Inventory Primary-secondary species >= 40 years age   
Natural Heritage Program Releve Native Plant Community Classes None 298
Classified Satellite Data Species composition Similarity to RNV classes, 5836
BWCAW, P.Wolter NRRI  Patches > 1 ha   
    Total 27679

 
 
 
Creation of composite physiographic-climate map units 
 

We assembled available spatial data on soils, landform, topography and climate 
(Table 2).  Minnesota Soil Atlas classes were converted to ordinal values to allow for 
multivariate analysis. We used principal components analysis on each of 3 major groups 
of data: climate, soil characteristics, and topography.  Based on PCA factor loadings we 
selected the following variables: soil drainage, elevation, pH, aspect, and maximum 
temperature.  These variables were put in an iterative clustering program (isoclus) to 
produce composite soil-topographic-climate units.  This map was then merged with a 
categorical soil or landform map (Geomorphology of MN, Cummings-Grigal Soil 
Associations, Land Type Associations). This was done to add additional information and 
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spatial resolution to the original map units. Units less than 10km2 were merged with 
surrounding values based on majority of neighborhood pixel values.  The 3 final 
composite maps contained from 110 to 180 map units for the Northern Superior Uplands.   
 
Table 2.  Environmental variables used to create composite map units. 
Data Source  Attributes  Resolution Minimum mapping unit 
Minnesota Soil Atlas Drainage, Texture, pH 1ha 16ha 
  Depth of rooting zone     
Cummings-Grigal Soil Texture+material 1ha 5km2 
Associations       
Geomorphology of MN Geomorphic and sedimentary 1ha 16ha 
  Associations     
Land Type Associations Soil-landform units 1ha 5km2 
        
Zedex Climate data Mean growing season minimum,     
  maximum temperature,  1km2 1km2 
  Precipitation     
USGS digital elevation elevation, slope, aspect, 1ha 1ha 
Model topographic position     

 
 
Data Analysis 
 
Spatial resolution of input data 

 
Predictive spatial variables were used as grid cells at a resolution of 100 m per 

side (1ha).  Positional accuracy of vegetation data in the form of sample points may vary 
from 30 to as much as 200 m.  Given this variability, vegetation point data represented 4 
ha in area (4 100 m grid cells).   
 
Upland-lowland stratification 
 

We used National Wetlands Inventory data to stratify upland and lowland areas 
prior to analysis.  Upland and lowland areas were classified separately and then merged. 

 
Uplands were identified at the NWI system level (U).  Other areas identified as 

open water or wetland were masked out.  The upland mask included some unclassified 
wetlands that were not interpretable from aerial photography. 

 
Areas classified under the forested wetland category include palustrine systems 

defined as forested and scrub/shrub that are not defined as permanently flooded.  Areas 
defined as upland, open water, emergent, or otherwise not dominated by woody plants 
were masked out.  The following codes to define forested wetland/semi-terrestrial forest:  
System = Palustrine (P),  class1 = forested (FO), scrub shrub (SS), wreg (water regime 
modifier) = A (temporarily flooded), B (saturated), C (seasonally flooded),  J 
(intermittently flooded).   

 
GIS processing 
 

Upland and lowland areas were analyzed separately based on the upland-lowland 
masks derived from the National Wetlands inventory.  For each sample vegetation patch 
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the majority value of the physiographic-climate composite was output, identified by the 
patch id.  The sample sizes were 14,100 and 11,000 for uplands and lowlands 
respectively. 

 
Association analysis 
 
 Association analysis has proven to be a useful technique for examining 
relationships between vegetation classes and soils, landforms and topography in northern 
lake states forests (Pastor and Broschart 1989, White and Mladenoff 1994).  The 
electivity index (Jacobs 1974, Jenkins (1979) a form of association analysis, has been 
shown to be useful for landscape level classifications.  Brown et al. (1999) used the 
electivity index to classify white pine blister rust hazard for the mixed forest province of 
Minnesota based on the relationship between sample blister rust occurrence and climate 
and topography. 
  

In order to test the hypothesis that ecosystem types are not randomly distributed 
across the landscape with respect to topography, climate, and soil-landform properties, 
we used the electivity index of Jacobs (1974) and Jenkins (1979):  

[1]  )1)((
)1)((ln

ijj

jij
ij

rp
prE

−
−

=   

Where Eij  is the electivity for ecosystem type i on spatial variable class j (physiographic-
climate composite).  rij is the proportion of ecosystem type i on variable class j, and pj is 
the proportion of the variable that occurs in class j. We used this index to determine if 
there is a non-random positive or negative association between ecosystem classes and 
physiographic-climate composite map units. 

 
 Because electivity values for different classes do not have the same distribution, 
electivity values were relativized to the maximum value for each class.  In order to 
classify physiographic-climate units, we developed decision rules based on the relative 
values and the variability of electivity values for each class.  We used 2 values to classify 
map units: Mij, the relativized electivity value for RNV class i on map unit j, and Si_, the 
ratio of Mij  to the mean plus 1 standard deviation for  RNV class i.  In the first iteration, 
each map unit was assigned the class of the maximum electivity value.  We then 
identified cases where one or more values were within 5% of the maximum.  In these 
cases, the map unit was coded to the RNV class with the highest Si_ value.  This ensures 
that the values from the right tail or positive end of the distribution were chosen. In most 
cases, the maximum relativized electivity value for each map unit also had the highest Si_ 
value.   
 
 We classified 3 maps with this method; each based on the original physiographic-
climate composite and 1 of three categorical overlays: Cummings-Grigal Soil 
Associations, Geomorphology of Mn, and Land Type Associations.  These 3 maps were 
evaluated for accuracy based on sample data withheld from analysis.   
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Bearing tree data 
 

GLO bearing tree data have proven to be useful for assessing pre-European 
settlement forest composition and structure and the subsequent changes with settlement 
(Grimm 1984, White and Mladenoff 1994) and for estimating wind and fire disturbance 
frequencies (Canham and Loucks 1984, Whitney 1986).  Bearing tree analysis was a key 
component in determining the disturbance frequencies for the Northern Superior Uplands 
(Frelich 1999).   
 
 We used the bearing tree data primarily to cross check our data samples and 
analysis.  First, we compared our samples points using electivity analysis with the 
bearing tree species at the nearest section corner, with a maximum distance of 300 m.  
This showed whether our classified sample points had any residual relationships with 
bearing tree species.   
 

We then analyzed the bearing tree data to determine if tree species showed similar 
distributions to our current sample data when analyzed in relation to the physiographic-
climate composite map.  In this analysis, the mean number of bearing trees by species 
was calculated for each map unit.  Based on these values we calculated electivity by tree 
species for each map unit.  Species distributions and electivity values were examined 
visually and compared with current sample data.  We then classified composite map units 
based on bearing tree composition and electivity scores in a similar fashion to the sample 
data, however decision rules were less formal.  Species composition was based that of the 
8 RNV classes.  For example, when both white pine and red pine had high relative 
electivity values for a map unit, we examined the other species and their electivity values 
to determine classification.  If white cedar, balsam fir, white spruce or northern hardwood 
species were present with positive electivity scores, then the map unit would be classified 
as mesic white pine-red pine.   
 
 
Accuracy assessment 
 
 In order to assess classification accuracy, we withheld 20% of the original sample 
data as a test data set.  We also used the Gap Analysis Program classification as a test 
data set, however this data is not truly independent from our sample data as some of the 
same inventory data in our sample set was used as training data for this Landsat based 
classification (T. Aunan Pers. comm.).  We used standard methods outlined by Congalton 
(1991) to calculate overall, producer’s and user’s accuracies.  Because this map classifies 
the potential distribution of RNV classes, and map units have low resolution compared 
with Landsat or aerial photo based classification, accuracy assessment is problematic.  In 
light of this, we applied methods used by Lynn et al.  (1995) which may correct for some 
of the error generated by differences in potential versus actual vegetation and true 
misclassification. 
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Results and Discussion 
 
Classification and accuracy assessment 
 
 We compared accuracy levels for classifications based on 3 different 
physiograhic-climate composite maps.  The map that included LTAs performed the best 
in overall accuracy and was selected for further analysis.  Initial assessment showed that 
the jack pine-aspen-oak had very low accuracy (producer’s 23 %, user’s 17%) and was 
confused with the jack pine-black spruce, mesic aspen-birch-spruce-fir and dry-mesic 
white pine-red pine classes.  We then re-classified these map units based on the next 
highest electivity value.  However, we left one area centered on Voyageurs National Park 
as jack pine-aspen-oak because the more precise releve data identified this type in that 
area.  There was also significant confusion between mesic white pine-red pine and dry-
mesic white pine-red pine, as 33% of the mesic pine samples were classified into the dry-
mesic class (Table 4a).  This is due in part to the difficulties in separating the mesic from 
the dry-mesic type based on information in the inventory data.   
 
Table 3.  Area for Range of Natural Variation ecosystem 
classes in the Northern Superior Uplands 
NSU Classification Hectares % Area
Sugar maple 234,046 9.7
Mesic white pine-red pine 234,124 9.7
Dry-mesic white pine-red pine 380,821 15.8
Lowland Conifer 431,473 17.9
Rich swamp 103,633 4.3
Mesic birch-aspen-spruce-fir 401,567 16.6
Jack pine-black spruce 376,530 15.6
Jack pine-aspen-oak 33,478 1.4
Water 211,779 8.8
Non-forested wetland 8,841 0.4

 
 Accuracy assessment for the revised classification with 7 classes using the 20% 
test data set is shown in table 4.  Overall accuracy was 61%.  Producer’s accuracy, the 
probability that a test pixel was correctly classified ranged from 24 to 96%.  Four classes 
had values over 60% (Sugar maple, dry-mesic white pine-red pine, lowland conifer, and 
jack pine.  User’s accuracy, defined as the probability that a classified pixel actually 
represents that category on the ground, varied from 25 (mesic-white pine-red pine) to 
94% (lowland conifer).  We also analyzed accuracy using the Gap Analysis Program data 
(Table 5.)  Because we could not reliably separate mesic white pine-red pine from dry-
mesic white pine-red pine within the Gap data, these classes were lumped for this 
analysis.  Results show a similar pattern, with an overall accuracy of 57% and similar 
patterns in the producer’s and user’s accuracies.  The error rates reported for this study 
are similar to those reported in other studies (Palik et al. 2000, Kernohan and Dunning 
1998, Allen and Wilson 1991). 
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Table 4.  Accuracy assessment using Northern Superior Uplands RNV ecosystem classes and 20% of sample 
data withheld from analysis. 
a) Producer's Accuracy  Sample data    

NSU Classification Sugar Maple 
Mesic white 
pine/red pine 

Dry-mesic 
white 
pine/red pine 

Lowland 
conifer Rich swamp 

Mesic aspen-
birch-spruce-
fir Jack pine 

Sugar Maple 70 3 5 0 0 8 1 
Mesic white pine/red 
pine 7 41 9 0 0 7 8 
Dry-mesic white pine/red 
pine 1 33 62 0 0 16 21 
Lowland conifer 0 0 0 96 72 0 0 
Rich swamp 0 0 0 4 28 0 0 
Mesic aspen-birch-
spruce-fir 17 8 7 0 0 24 8 
Jack pine 5 16 17 0 0 45 62 
        
b)  User's Accuracy       

  Sugar Maple 
Mesic white 
pine/red pine 

Dry-mesic 
white 
pine/red pine 

Lowland 
conifer Rich swamp 

Mesic aspen-
birch-spruce-
fir Jack pine 

Sugar Maple     56 2 8    0    0 33 2 
Mesic white pine/red 
pine      6 25 16    0    0 30 23 
Dry-mesic white pine/red 
pine      0 8 40    0    0 27 25 
Lowland conifer      0 0 0  94    6 0 0 
Rich swamp      0 0 0  62  38 0 0 
Mesic aspen-birch-
spruce-fir      9 3 7    0    0 66 15 
Jack pine      1 2 7    0    0 46 44 
     overall Accuracy: 61% 
 
 Because this map estimates the potential distribution of RNV classes, and map 
units have low resolution compared with Landsat or aerial photo based classification, 
accuracy assessment should be viewed somewhat differently.  This map predicts the 
predominant or highest probability RNV class for a given map unit.  Because these are 
coarse level units (minimum size of 10km2), and vegetation samples are at a finer 
resolution (approximately 1ha minimum size) it is very likely that other types will occur 
within a given map unit.  Mesic aspen-birch-spruce-fir makes up 26% of the sample data 
(Table 5) and is well distributed in the study area. When selecting a random sample from 
the landscape, we are 5 times more likely to pick a sample of mesic aspen-birch-spruce-
fir than of mesic-white pine-red pine.  By scaling the error rates of the producer’s matrix 
by their probability of occurrence (Lynn et al. 1995), we see that 19% of the 36% total 
error is due to misclassification of mesic-aspen-birch-spruce-fir (Table 6).  This shows 
that, proportionately, this type accounts for most of the error, as this type is broadly 
distributed and shows less affinity to composite physiographic map units. 
 
 The user’s matrix (Table 4b) can also be interpreted in different ways.  If we look 
at this from the standpoint of potential vegetation, we see that 30% of mesic white pine-
red pine and 46% of jack pine is currently in mesic aspen-birch-spruce-fir.  While some 
of this is due to misclassification, much of this may be due land use history and current 
management practices.   
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Table 6.  Producer's error estimates scaled by sampling 
probability. 

NSU Classification 

Scaled 
error 
estimate 

Estimated 
probability of 
occurrence 

Sugar Maple 1.30 0.04
Mesic white pine/red pine 2.12 0.04
Dry-mesic white pine/red pine 3.43 0.09
Lowland conifer 0.93 0.34
Rich swamp 2.25 0.05
Mesic aspen-birch-spruce-fir 19.46 0.26
Jack pine 6.87 0.18
Total error 36.37  
 
 
Bearing tree analysis 
 
 Electivity analysis of bearing trees at corners within 300 m of current sample 
points showed that there some relatively strong residual relationships with bearing tree 
samples.  Jack pine bearing trees were positively associated with both jack pine types.  
Red pine bearing trees had a strong positive association with the dry-mesic white pine-
red pine types and also showed a positive association with the mesic pine type.  White 
pine was more strongly associated with the mesic type.  Maple and yellow birch bearing 
trees had the highest associations with the sugar maple type.  Paper birch, fir and white 
cedar bearing trees showed positive associations with the mesic aspen-birch-spruce-fir 
class.  Fir and white cedar also had a positive associations with the sugar maple type 
indicating that current sugar maple dominated sites may have had a greater conifer 
component at the time of settlement.  White cedar and black ash had relatively high 
positive associations with rich swamp, while tamarack and black spruce were the only 
bearing tree species positively associated with lowland conifer. 
 
 

Table 5.  Accuracy assessment using Gap Analysis program data recoded into native ecosystem types.    
        
a) Producer's Accuracy  Gap Analysis Program Classification  

NSU Classification Sugar Maple 
white pine/red 

pine Lowland conifer Rich swamp 
Mesic aspen-

birch-spruce-fir Jack pine  
Sugar Maple 70 4 0 0 9 1  
white pine/red pine 7 55 0 0 36 32  
Lowland conifer 0 0 88 76 0 0  
Rich swamp 0 0 12 24 0 0  
Mesic aspen-birch-spruce-fir 22 15 0 0 27 8  
Jack pine 1 26 0 0 28 59  
        
b)  User's Accuracy       

  Sugar Maple 
white pine/red 

pine Lowland conifer Rich swamp 
Mesic aspen-

birch-spruce-fir Jack pine  
Sugar Maple 67 8 0 0 23 3  
white pine/red pine 2 37 0 0 29 32  
Lowland conifer 0 0 65 35 0 0  
Rich swamp 0 0 45 55 0 0  
Mesic aspen-birch-spruce-fir 15 22 0 0 46 17  
Jack pine 0 18 0 0 22 60  
        
    Overall accuracy: 57%  
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 .   
 

  
 We also created a map based on electivity relationships of bearing tree species 
and the composite physiographic map.  A cross tabulation of the map based on current 
data versus the bearing tree based classification for upland types is presented in Table 8 
in the same format as the accuracy assessment tables.  Overall agreement between the 2 
maps is 66%.  Agreement is strongest in the sugar maple, mesic-aspen-birch-spruce-fir 
and jack pine classes.  Of the area classified as sugar maple by the bearing tree data, 99% 
was classified as sugar maple using current vegetation data (Table 8a).  However, of the 
total area classified as sugar maple by the current data, 59% was classified as sugar maple 
by the bearing tree data, with mesic white pine and mesic aspen-birch-spruce-fir 
accounting for 37% of the area (Table 8b).  This would suggest that sugar maple might 
have expanded to occupy other mesic sites in the post-settlement landscape.  Similarly, of 
the total area classified as mesic-white pine-red pine by the bearing trees, the current data 
classified 42% the same, while sugar maple and mesic aspen-birch-spruce-fir account for 

Table 7.  Electivity scores for sample data classified into RNV types and bearing tree species 
                                                                Bearing tree species 

RNV class jack pine red pine  white pine Pine 
paper 
birch aspen 

yellow 
birch Fir Maple Cedar 

black 
ash spruce tamarack

Jack pine-hardwood 0.51 0.44 0.00 0.25 -0.06 0.22 -0.54 -0.42 -2.54 -0.62 -1.59 0.04 -0.23
Jack pine-black spruce 0.44 -0.25 -0.17 0.57 -0.17 -0.04 -0.64 -0.40 -3.40 -0.90 -3.14 0.08 -0.14
Dry-mesic white pine-
red pine 0.54 1.37 0.54 0.10 -0.22 0.38 0.66 -0.33 -2.00 -0.52 -0.26 -0.51 -0.31
mesic white pine-red 
pine -0.13 0.76 1.04 1.10 0.24 0.36 0.70 -0.24 -2.00 -0.99 0.22 -0.43 -0.55
mesic-aspen-birch-fir-
spruce -0.57 -0.59 0.21 -0.20 0.39 -0.02 0.21 0.48 0.33 0.36 0.19 -0.17 -0.26
Sugar maple -2.90 -0.83 -0.14 -1.40 0.41 -0.20 0.91 0.64 2.70 0.60 0.78 -0.35 -1.36
Rich swamp -1.12 -0.43 0.11 -0.72 0.09 0.23 0.51 0.30 0.47 0.87 1.88 -0.31 0.06
Lowland conifer 0.00 -0.60 -0.80 -0.30 -0.39 -0.33 -0.93 -0.41 -2.00 -0.39 -1.37 0.31 0.41

Table 8.  Cross tabulation comparison of NSU classifications based on current vegetation data versus  
GLO bearing tree data.     
a) Producer's  Bearing tree based classification   
NSU current 
classification Sugar Maple 

Mesic white 
pine/red pine 

Dry-mesic white 
pine/red pine 

Mesic aspen-birch-
spruce-fir Jack pine 

Sugar Maple 99 17 4 8 0 
Mesic white pine/red 
pine 0 42 11 13 5 
Dry-mesic white pine-red 
pine 0 12 76 3 28 
Mesic aspen-birch-
spruce-fir 1 24 1 66 2 
Jack pine 0 5 9 10 64 

b) User's      
  Sugar Maple Mesic white Dry-mesic white Mesic aspen-birch- Jack pine 
Sugar Maple 59 20 4 17 0 
Mesic white pine/red 
pine 0 49 12 27 11 
Dry-mesic white pine/red 
pine 0 8 50 4 38 
Mesic aspen-birch- 0 16 0 80 3 
Jack pine 0 3 5 12 79 
   Overall accuracy  66 % 
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41%.  This may indicate that sugar maple and mesic-aspen-birch-spruce-fir occupy 
former mesic white pine-red pine areas 
 
These results show that in general, sample data and analysis based on current vegetation 
data for the NSU revealed ecological potential similar to that of the bearing tree data.  
However, there are some important differences, particularly with respect to the 
distribution of the mesic white pine-red pine, sugar maple and mesic aspen-birch-spruce-
fir types.   

Conclusions 
 

 Our primary goal was to create a map showing the potential distribution of RNV 
ecosystem classes for the Northern Superior Uplands ecological section.  In spite of the 
coarse nature of the available spatial data, and the difficulties in classifying forest 
inventory data into these RNV types, we believe that we have created a map that can be 
used for landscape scale planning in this region.  This map is relatively coarse, and 
primarily shows the general distribution of these classes.  However, by classifying upland 
and lowland areas separately, and by integrating spatial databases on soils, landform, 
topography and climate, this map demonstrates the potential variability within Land Type 
Associations.   
 
 Assessing the accuracy of potential vegetation classifications is difficult at best.  
There are a number of sources of error, including differences between potential versus 
current vegetation, difficulty in classifying sample data, and differences between the map 
unit resolution (coarse) and sample data (fine).  Given these difficulties, this map is 
reasonable estimation of the potential distribution of these RNV ecosystem types.   
 
 We have also used the GLO bearing tree data in our analysis.  Our analysis shows 
that while there are differences, there are also strong similarities that indicate that the 
current sample data reveal similar relationships to the composite physiographic map 
when compared with the bearing tree data. 
 
 Finally, we note that this is a first attempt at this type of classification for the 
NSU.  Future efforts will benefit from both finer scale spatial data and higher quality 
vegetation data.   
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