

NCEES Principles and Practice of Engineering ARCHITECTURAL ENGINEERING Exam Specifications

Effective Beginning with the April 2018 Examinations

- The exam is an 8-hour open-book exam. It contains 40 multiple-choice questions in the 4-hour morning session, and 40 multiple-choice questions in the 4-hour afternoon session. Examinee works all questions.
- The exam uses the US Customary System (USCS) of units.
- The exam is developed with questions that will require a variety of approaches and methodologies, including design, analysis, and application.
- The knowledge areas specified as examples of kinds of knowledge are not exclusive or exhaustive categories.

Approximate Number of Questions

I. Building Systems Integration

- 12
- A. Aspects of building performance that affect human comfort (e.g., vibration, noise, lighting, climate control)
- B. Building envelope analysis for integrity and efficiency
- C. Impact of one system on another (e.g., lighting load on air-conditioning system capacity)
- D. Life safety systems (e.g., generators, smoke control, exit lighting, fire alarms)
- E. Comparative systems efficiencies (including calculations for energy use and materials)
- F. Sustainability in design and construction (e.g., energy efficiency, indoor air quality, water conservation)
- G. Applicable standards, codes, and regulations (e.g., NFPA, ASHRAE, ICC, ADA)
- H. Building plans, specifications, and models

II. Electrical Systems

22

- A. Electrical power systems, including load flow and distribution
- B. Short circuit analysis
- C. Grounding principles
- D. Electrical construction methods and materials
- E. Overcurrent protection methods and device coordination
- F. Branch circuit and feeder conductor sizing
- G. Power factor correction
- H. Voltage drop calculations
- I. One-line diagram
- J. Fire alarm design principles
- K. Lighting calculations (e.g., LPD, zonal cavity)
- L. Lighting control
- M. Receptacle layout

III.	Me	echanical Systems	22
		Heat gain and loss calculations	
		HVAC system analysis and selection (e.g., air cooled/water cooled, all air,	
		heat pumps, split systems)	
	C.	Energy calculations	
	D.	Ventilation and pressurization (e.g., outside air requirements, exhaust,	
		kitchen hoods, fume hoods, infiltration)	
	E.	Indoor air quality	
	F.	Air distribution	
	G.	Psychrometrics	
		Hydronic and steam systems	
		Fan laws	
		Pump laws	
		Pressure loss calculations in ductwork and piping	
		Materials and methods (e.g., ductwork, piping materials, insulation)	
		Piping for specialty systems (e.g., fuel oil, natural gas, refrigerant)	
		Pipe expansion (e.g., expansion joints, loops, anchors)	
	O.	Flow and riser diagrams (e.g., primary/secondary, variable primary, flow	
	_	balance, hydraulic bridge location)	
		Static pressure calculations (e.g., NPSH, static height, pressure in building)	
	_	Equipment selection (e.g., pumps, air handling units, chillers, boilers)	
		Sequences of operation for building controls	
		Domestic water systems (e.g., routing, sizing)	
		Sanitary waste and vent systems (e.g., routing, sizing, slope, invert)	
		Stormwater systems	
	٧.	Fire protection sprinkler and standpipe systems	
IV.	Str	ructural Systems	16
	A.	Types of construction (e.g., structural steel, timber, concrete, masonry)	
	B.	Component forces (e.g., tension, compression, bending, shear)	
	C.	Structural load effects on electrical, mechanical, and structural systems	
		(e.g., seismic, wind, thermal, vibrations)	
		Connections (e.g., bolted, welded, base plates, brackets)	
		Loads (e.g., gravity, lateral, temperature, settlement, construction)	
		Analysis of trusses, frames, and shear walls	
		Analysis of construction systems (e.g., staging, bracing, loads)	
	Н.	Analysis of stability (e.g., column buckling, beam lateral torsion buckling,	
		static stability)	
	I.	Analysis of deflection (e.g., bending, elongation, shortening, lateral)	
	J.	Design of structural components (e.g., steel beam, wood column, economy)	

L. Material characteristics of steel, concrete, masonry, and timber (e.g.,

K. Foundations (e.g., piles, piers, spread)

strength, stiffness, hardness, fatigue concerns)

V. Project Management and Construction Administration

- A. Differing site conditions
- B. Alternates (e.g., bid alternates, substitutions, prior approvals)
- C. Contract administration correspondence (e.g., request for information, architect's supplemental instruction, change order, progress report, quality control)

8

- D. Construction documents and the submittal process
- E. System conflict resolution
- F. Scheduling of design tasks, sequence of activities, CPM
- G. Quality control
- H. Legal issues (e.g., contracts, impact of decisions that may result in lawsuit, errors and omissions)

3